Quiet Power: Dynamic Models for Passive Components


Reading time ( words)

A year ago, my Quiet Power column described the possible large loss of capacitance in multilayer ceramic capacitors (MLCC) when DC bias voltage is applied. However, DC bias effect is not the only way we can lose capacitance. Temperature, aging, and the magnitude of the AC voltage across the ceramic capacitor also can change its capacitance.

Finally, the initial tolerance needs to be considered as well. In the worst case, we may lose up to 90% of the capacitance for an X5R capacitor, and even for an X7R capacitor. This column will show you the details and also how the most advanced manufacturers are helping the users with new simulation models to take these effects into account.

As an actual example, let us look at one of the capacitors that was extensively tested, where 1uF 0603-size 16V capacitors were tested from various vendors. We further assume that we want to use the part on a 12V supply rail, where the AC noise is low (this will be important later when we take the AC bias dependence into account). Some of the samples were chosen with X5R, some with X7R temperature characteristics. As showed with actual test data , X7R capacitors are sometimes worse for DC bias sensitivity than X5R parts.

If we take the part from Vendor B (labeled B7) in Figure 1, we see that at 12V DC bias we can lose 60% or 70% of the capacitance, dependent on which way the DC bias changes. But when we need to consider the worst-case capacitance loss, we have to consider the cumulative effect of all of the following factors:

  • Initial tolerance
  • Temperature effect
  • DC bias effect
  • AC bias effect
  • Aging

The sample had +-10% initial tolerance. The X7R temperature characteristics comes with an additional +-15% tolerance window for the temperature variation.

To read this entire article, which appeared in the March issue of The PCB Design Magazine, click here.

Share


Suggested Items

Achieving Optimum Signal Integrity During Layer Transition on High-Speed PCBs

07/11/2018 | Chang Fei Yee, Keysight Technologies
In electronic systems, signal transmission exists in a closed-loop form. The forward current propagates from transmitter to receiver through the signal trace. Meanwhile, the return current travels backward from receiver to transmitter through the power or ground plane directly underneath the signal trace that serves as the reference or return path. The path of forward current and return current forms a loop inductance. It is important to route the high-speed signal on a continuous reference plane so that the return current can propagate on the desired path beneath the signal trace.

Dave Wiens Discusses Multi-board Design Techniques

07/09/2018 | Andy Shaughnessy, I-Connect007
For our multi-board design issue, I interviewed Dave Wiens, product marketing manager for Mentor, a Siemens business. We discussed how the multi-board design technique differs from laying out single boards, along with the planning, simulation and analysis processes required to design multi-board systems.

Paving the Way for 400Gb Ethernet and 5G

06/26/2018 | Chang Fei Yee, Keysight Technologies
This article briefly introduces the 4-level pulse amplitude modulation (PAM-4) and its application in 400 Gigabit Ethernet (400GbE), to support the booming data traffic volume in conjunction with the deployment of 5G mobile communications. Furthermore, this article also highlights the essential pre-layout effort from signal integrity perspective for physical (PHY) link design on a PCB, including material selection, transmission line design and channel simulation to support 56Gbps data rate that paves the way for seamless communication in 400GbE.



Copyright © 2018 I-Connect007. All rights reserved.