Quiet Power: Dynamic Models for Passive Components

Reading time ( words)

A year ago, my Quiet Power column described the possible large loss of capacitance in multilayer ceramic capacitors (MLCC) when DC bias voltage is applied. However, DC bias effect is not the only way we can lose capacitance. Temperature, aging, and the magnitude of the AC voltage across the ceramic capacitor also can change its capacitance.

Finally, the initial tolerance needs to be considered as well. In the worst case, we may lose up to 90% of the capacitance for an X5R capacitor, and even for an X7R capacitor. This column will show you the details and also how the most advanced manufacturers are helping the users with new simulation models to take these effects into account.

As an actual example, let us look at one of the capacitors that was extensively tested, where 1uF 0603-size 16V capacitors were tested from various vendors. We further assume that we want to use the part on a 12V supply rail, where the AC noise is low (this will be important later when we take the AC bias dependence into account). Some of the samples were chosen with X5R, some with X7R temperature characteristics. As showed with actual test data , X7R capacitors are sometimes worse for DC bias sensitivity than X5R parts.

If we take the part from Vendor B (labeled B7) in Figure 1, we see that at 12V DC bias we can lose 60% or 70% of the capacitance, dependent on which way the DC bias changes. But when we need to consider the worst-case capacitance loss, we have to consider the cumulative effect of all of the following factors:

  • Initial tolerance
  • Temperature effect
  • DC bias effect
  • AC bias effect
  • Aging

The sample had +-10% initial tolerance. The X7R temperature characteristics comes with an additional +-15% tolerance window for the temperature variation.

To read this entire article, which appeared in the March issue of The PCB Design Magazine, click here.


Suggested Items

Who Really Owns the PCB Layout? Part 2

02/07/2018 | Paul Taubman, Nine Dot Connects
In Part 1 of this series, Paul Taubman made the bold statement that the PCB layout is just as much a mechanical effort as it is an electrical one. In Part 2, he threads the needle, explaining why he believes that a PCB truly a mechatronic design, and why mechanical engineers may be more prepared to take on the PCB layout.

Pulsonix Ready for 2018

02/02/2018 | Andy Shaughnessy, Design007 Magazine
Pulsonix has been developing PCB design software for almost 20 years, establishing a reputation for its full-featured, low-cost design tools. Now, the UK-based company wants to break into the US market, and Pulsonix recently showcased its latest tools at PCB West. During the show, I spoke with Business Development Manager Ty Stephens about the company’s latest tools and plans to become a major player in the US market.

Fully Automated Schematic Verification

02/05/2018 | Craig Armenti, Mentor
Schematic verification is a part of the hardware engineer’s responsibility just as PCB layout verification is an accepted part of the PCB designer’s responsibility. However, with today’s circuit designs becoming more and more complex, time-consuming manual schematic verification is no longer an option. Manual verification of a complex circuit introduces significant risk by not identifying schematic design errors that are, in turn, passed to the downstream processes and ultimately to the fabricated board.

Copyright © 2018 I-Connect007. All rights reserved.