Enhancing Thermal Performance of CSP Integrated Circuits


Reading time ( words)

In the portable electronics market, power management integrated circuits (PMICs) are increasingly found being packaged into ball grid array (BGA) and chip scale packages (CSP) for their lower material costs, improved electrical performance (no bond wire impedances), and smaller form factors. These advantages do not come without compromise: The silicon die of CSPs are no longer in direct contact with large heat-spreading thermal paddles (E-PADs) used for electrical and thermal conduction.

This is the primary performance trade-off; because the IC substrate is not in contact with an E-PAD there is no high-conductivity direct thermal connection from the substrate to the heat-spreading copper planes on the PCB. This article will discuss PCB level methods that will lower the operating temperature of CSP devices by examining methods to transfer heat from the source and transport it to the ambient environment by lowering thermal resistance of the CSP IC. There are usually multiple ways to enhance the performance while simultaneously lowering the operating temperature that can be incorporated into new boards or revisions of existing boards.

In order to meet size and weight requirements, constraints of portable electronic designs often force PCB designers to reduce the size of components and PCB real estate area. To meet these demands, the use of CSP packages to shrink the PCB area needed is a common change in designs. As a result of the reduction of total PCB area, the available options to move heat and route high-power PCB traces is also reduced. Furthermore, the thermal performance cannot be matched when a QFN is compared to an equivalent CSP package; therefore, it is imperative that the PCB is designed to optimize heat transfer from the CSP to the PCB, which in turn dissipates it into the atmosphere. The parameter measuring the heat conductivity is the junction-to-ambient thermal resistance specification, Theta-JA (ӨJA (˚C/W)).  

To read this entire article, which appeared in the January issue of The PCB Design Magazine, click here.

Share


Suggested Items

Julie Ellis: Communication and Fabrication Knowledge Critical for Designers

11/14/2018 | Andy Shaughnessy, Design007 Magazine
Field Application Engineer Julie Ellis of TTM sees it all: good designs, bad designs, and everything in between. Her classes on proper DFM techniques are always a big draw. She taught at the inaugural AltiumLive in 2017 and was back at this year’s event. I caught up with Julie and asked her to discuss some of the things she covered in class. As she points out, many issues could be eliminated if designers communicated with their fabricators and had a better understanding of how PCBs are manufactured.

Altium Designer Increasingly Used for High-Speed Design

11/05/2018 | Andy Shaughnessy, Design007 Magazine
I recently met with Mark Forbes, the director of technical marketing at Altium, during the AltiumLive event in San Diego. We discussed Mark’s class on MCAD/ECAD collaboration and the success of AltiumLive, as well as the growth of Altium users who design high-speed PCBs with Altium Designer.

Karl-Heinz Fritz on Cicor’s DenciTec Technology

10/24/2018 | Nolan Johnson, I-Connect007
In a recent interview, Karl-Heinz Fritz, VP of technology at Cicor, discusses the business, DenciTec technology, the impact of tariffs on trade, and applications for 3D printing and additive manufacturing, including potential new opportunities for PCB designers.



Copyright © 2018 I-Connect007. All rights reserved.