Systematic Estimation of Worst-Case PDN Noise: Target Impedance and Rogue Waves


Reading time ( words)

In the dark ages of power distribution design, the typical advice was to use a bulk capacitor and one 0.1uF bypass capacitor for every power pin on the digital circuit. This was very unscientific, but served the industry reasonably well in low-density and low-speed circuits. As the designs got more demanding, the target impedance concept was developed [1]. Using a target impedance, designers had a metric and a design goal to guarantee that the voltage transients stay within specified limits.

Strictly speaking, the target-impedance concept is valid only for flat self-impedance profiles; however, most of our practical designs do not have that luxury. With non-flat impedance profiles, the noise is different. Surprisingly and counterintuitively, keeping the same maximum impedance, the more we deviate from the flat impedance by pushing the impedance down in certain frequency ranges, the higher the worst-case transient noise becomes. This raises the question how to do a systematic design and also gives rise to speculations about rogue waves [2]. But there is a systematic, fast and efficient way of calculating the worst-case noise for any arbitrary impedance profile. 

The target impedance concept assumes that the power distribution network is hit by a series of current steps, each current step having a magnitude of DI and fastest transition time of ttr. If up to the BW bandwidth of the excitation the PDN impedance is Ztarget, the resulting voltage transients are within the DV limits.

To read this entire article, which appeared in the December 2015 issue of The PCB Design Magazine, click here.

Share


Suggested Items

Who Really Owns the PCB Layout?

12/08/2017 | Paul Taubman, Nine Dot Connects
In order to understand the current climate, we have to look at the division of labor that took place in electronic design about 40 years ago. The labor was divided into two processes, with the first being the design itself. This process was (and still is) owned by the electrical engineers. Though circuit design has changed, the methods for representing the circuit have not. Paul Taubman of Nine Dot Connects explains.

Cadence Allegro Pulse Extends Team Collaboration

12/06/2017 | Cadence Design Systems, Inc.
Cadence Allegro Pulse is the PCB industry’s first solution to enable extended team collaboration by providing near-real-time insights into the complexities of the electronic design process. Allegro Pulse connects management, engineering, procurement and other business stakeholders to up-to-date work-in-progress design data in a single, unified web-based platform.

Bay Area Circuits Updates InstantDFM Tool

11/29/2017 | Andy Shaughnessy, PCB Design007
Bay Area Circuits is on a quest to help PCB designers and design engineers. For the past few years, the company has been holding facility tours and open house events to help designers understand more about the fabrication process. Now, Bay Area Circuits has upgraded its free design tool, InstantDFM.com, which allows customers and non-customers alike to check manufacturability and request pricing of their jobs. At PCB West, Andy Shaughnessy spoke with President Stephen Garcia and COO Brian Paper about the new tool update, and some of the other services they offer for PCB designers.



Copyright © 2017 I-Connect007. All rights reserved.