Life Beyond 10 Gbps: Localize or Fail!


Reading time ( words)

What does it take to design predictable PCB or packaging interconnects operating at tens of Gbps? Properly identified dielectric and conductor roughness models, known manufacturer geometry adjustments, and properly validated simulation tools are necessary conditions. One of the sufficient conditions is the localization property; to be predictable, all elements of an interconnect link must be localized up to a target frequency. This article introduces and illustrates the localization concept, with the power-flow density computed using the unique Trefftz finite element solver available in Simbeor THz software.

Ideally, all interconnects should look like uniform transmission lines (or wave-guiding structures) with the specified characteristic impedance. In reality, an interconnect link is typically composed of transmission lines of different types (microstrip, strip, coplanar, coaxial, etc.) and transitions between them such as vias, connectors, breakouts and so on. Transmission lines may be coupled to each other that cause crosstalk. The transitions may reflect and radiate energy due to discontinuities in signal and reference conductors. The crosstalk, reflections and radiation cause unwanted and sometime unpredictable signal degradation. If analysis of traces or via hole transitions is possible in isolation from the rest of the board up to a target frequency, the structure is called localized. Structures with behavior that is dependent on other structures and board geometry are called not localized, and they should not be used in multi-gigabit interconnects in general.

Examples of non-localized structures are coupled traces, striplines with non-connected reference planes, traces crossing gaps in reference planes, vias with far, no or insufficient stitching vias (vias connecting reference planes of the connected traces). Analysis of non-localized structures is usually possible only at the post-layout stage with substantial model simplifications that degrade accuracy at higher frequencies. To design predictable interconnects, only localized structures must be used—this is one of the most important elements for design success. The localization is always bandwidth limited for striplines (two reference conductors) and for vias (two or more reference conductors). How do we estimate the localization property of a transition? One way is to run an electromagnetic analysis of the structure with different boundary conditions or simply change simulation area size without changing phase reference planes and evaluate the differences in the computed S-parameters. If the difference is small, the structure may be considered localized and suitable for final design.

To read this entire article, which appeared in the September 2018 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

Designing for Complex PCBs

12/12/2019 | I-Connect007 Editorial Team
The I-Connect007 editorial team sat down with Freedom CAD’s Scott Miller to talk about the industry’s demand for more increasingly complex PCBs, and the challenges this presents. They also discuss Freedom CAD’s in-house training programs, the company’s recent book authored by Scott, and why communication is such an important tool in a PCB designer’s toolbox.

AltiumLive Frankfurt 2019: Rick Hartley Keynote

11/25/2019 | Pete Starkey, I-Connect007
Introduced by Lawrence Romine, Altium’s VP of corporate marketing, as a “low impedance presenter with a passion for his topic,” Rick Hartley delivered the opening keynote at the AltiumLive 2019 European PCB Design Summit in Frankfurt, Germany. Pete Starkey provides an overview of Hartley's presentation, entitled “What Your Differential Pairs Wish You Knew."

IPC High-reliability Forum and Microvia Summit Review, Part I

07/25/2019 | Pete Starkey, I-Connect007
The IPC High-Reliability Forum and Microvia Summit covered a broad range of topics related to reliability and provided interactive opportunities to share expert knowledge and experience in determining and understanding the causes of failure and selecting the best design rules, materials, processes, and test methods to maximise product reliability.



Copyright © 2020 I-Connect007. All rights reserved.