Achieving Minimal Crosstalk in Multi-board Interconnect

Reading time ( words)

This article discusses the impact of signal routing and return path or reference on crosstalk in multi-board interconnect. The investigation is performed with 3DEM simulation using Keysight EMPro. Subsequently, crosstalk in frequency and time domain are observed, along with surface current density on the return path.


In an electronic system, the signal transmission exists in a closed-loop form. The forward current propagates from transmitter to receiver through the signal trace. On the other hand, for a single PCB, the return current travels backward from receiver to transmitter through the ground plane closest to the signal trace. Meanwhile, for multi-board interconnect (e.g., connectivity through flex or ribbon cable), the return current travels back to the transmitter through the ground or return wire, preferably as close as possible to the signal wire. The path of forward current and return current forms a loop inductance.

It is important to provide sufficient ground or return wire in multi-board interconnect. Otherwise, the return current might detour and propagate on a longer path that leads to the sharing of common return wire or path by different signals that poses high risk of interference or coupling among the signals due to higher mutual inductance. This interference results in signal crosstalk. This phenomenon is proven in the following section with 3DEM simulation.

Analyzing Crosstalk with 3DEM Modeling

To investigate the impact of signal routing and the return path on multi-board signal integrity, three test models of 3DEM were constructed using Keysight EMPro. In test case 1, two microstrip signal traces with 50 ohm characteristic impedance in single-ended mode on board “A” are connected to board “B” using flex cable. The signal traces on each board are 100 mils long, 1.2 mils thick and 5 mils wide. The solid ground plane exist 3 mils beneath the signals on each board. FR-4 is used as the PCB dielectric substrate.

To read this entire article, which appeared in the September 2018 issue of Design007 Magazine, click here.



Suggested Items

The Impact of Inductance on Impedance of Decoupling Capacitors

08/08/2019 | Chang Fei Yee, Keysight Technologies
This article discusses the impact of interconnection inductance on the impedance of the decoupling capacitor, which influences the power integrity of the PCB. The investigation is performed with 3DEM simulation by varying the trace length and height of stitching vias that connect the decoupling capacitor across the power rail and ground.

IPC High-reliability Forum and Microvia Summit Review, Part II

08/06/2019 | Pete Starkey, I-Connect007
The Microvia Summit on May 16 was a special feature of the 2019 event in Baltimore, since microvia challenges and reliability issues have become of great concern to the PCB manufacturing industry. It provided updates on the work of members of the IPC V-TSL-MVIA Weak Interface Microvia Failures Technology Solutions Subcommittee and opportunities to learn about latest developments in methods to reveal and explain the presence of latent defects, identify causes and cures, and be able to consistently and confidently supply reliable products.

Libraries: A Must-have for Design

06/17/2019 | Dan Feinberg
I-Connect007 was invited to attend a session of the Orange County Chapter of the IPC Designers Council (DC). Even though I have been an IPC member for over half a century (yes, almost since vacuum tubes dominated design), this was my first DC event.

Copyright © 2019 I-Connect007. All rights reserved.