Achieving Minimal Crosstalk in Multi-board Interconnect


Reading time ( words)

This article discusses the impact of signal routing and return path or reference on crosstalk in multi-board interconnect. The investigation is performed with 3DEM simulation using Keysight EMPro. Subsequently, crosstalk in frequency and time domain are observed, along with surface current density on the return path.

Introduction

In an electronic system, the signal transmission exists in a closed-loop form. The forward current propagates from transmitter to receiver through the signal trace. On the other hand, for a single PCB, the return current travels backward from receiver to transmitter through the ground plane closest to the signal trace. Meanwhile, for multi-board interconnect (e.g., connectivity through flex or ribbon cable), the return current travels back to the transmitter through the ground or return wire, preferably as close as possible to the signal wire. The path of forward current and return current forms a loop inductance.

It is important to provide sufficient ground or return wire in multi-board interconnect. Otherwise, the return current might detour and propagate on a longer path that leads to the sharing of common return wire or path by different signals that poses high risk of interference or coupling among the signals due to higher mutual inductance. This interference results in signal crosstalk. This phenomenon is proven in the following section with 3DEM simulation.

Analyzing Crosstalk with 3DEM Modeling

To investigate the impact of signal routing and the return path on multi-board signal integrity, three test models of 3DEM were constructed using Keysight EMPro. In test case 1, two microstrip signal traces with 50 ohm characteristic impedance in single-ended mode on board “A” are connected to board “B” using flex cable. The signal traces on each board are 100 mils long, 1.2 mils thick and 5 mils wide. The solid ground plane exist 3 mils beneath the signals on each board. FR-4 is used as the PCB dielectric substrate.

To read this entire article, which appeared in the September 2018 issue of Design007 Magazine, click here.

Share




Suggested Items

HyperLynx: There’s an App for That

08/05/2022 | I-Connect007 Editorial Team
I recently spoke with Todd Westerhoff, product marketing manager for signal integrity software tools at Siemens. We discussed a new capability called HyperLynx Apps that offers a new take on traditional signal and power integrity analysis, and how that fits in with the Siemens plan to put SI and PI tools into the hands of more designers early in the design cycle.

The Practical Side of Using EM Solvers

08/01/2022 | Heidi Barnes, Keysight Technologies
Electromagnetic (EM) solvers based on Maxwell’s equations have proven invaluable in the advancement of digital electronics and wireline communications. Plain and simple, electrical engineers need to know what a circuit or electrical interconnect will do when excited by a dynamic or varying signal. In the signal integrity world, an interconnect that passes a DC connectivity check can completely fail at higher frequencies. In the power integrity world, a power rail that measures the correct DC voltage could easily go into oscillation when a dynamic load is applied. Learning the basic skills to fire up an EM simulator, obtain qualitative answers in minutes, and higher fidelity answers in a few days, can be the difference between sleepless nights of product failures vs. robust designs with wide design margins.

Webinar Review: Thermal Integrity of High-Performance PCB Design

08/01/2022 | Andy Shaughnessy, Design007 Magazine
Electrical and mechanical engineers may be working on the same product development teams, but they speak different languages, and they have completely different objectives. As a result, these folks almost never use the same software tools. But Cadence’s new Celsius Thermal Solver is an exception to the rule. In a new CadenceTECHTALK webinar, “How Static and Dynamic IR Drop Analysis Can Help PCB Designs and Challenges,” product manager Melika Roshandell and SerDes SI/PI engineer Karthik Mahesh Rao explain how the EE and ME can both use the Celsius Thermal Solver to achieve their disparate objectives.



Copyright © 2022 I-Connect007. All rights reserved.