The Impact of PCB Dielectric Thickness on Signal Crosstalk


Reading time ( words)

This article studies the impact of dielectric thickness on crosstalk for transmission lines in single-ended and differential mode on outer (microstrip) and inner (stripline) PCB layers. Crosstalk analysis is performed in 2D simulation and S-parameters are subsequently observed.

Introduction to Crosstalk

Crosstalk is an unintentional electromagnetic (EM) field coupling between transmission lines on a PCB. This phenomenon becomes a major culprit in signal integrity (SI), contributing to the rise of bit error occurrence in data communications and electromagnetic interference (EMI). With the existence of mutual inductance and capacitance between two adjacent transmission lines on a PCB, crosstalk has become more severe due to the shorter signal rise/fall times at today’s higher data speed rates.

Crosstalk can be minimized by routing the PCB traces further apart and reducing the dielectric thickness between PCB trace and reference plane. We will observe how a PCB’s dielectric thickness affects the signal crosstalk. All crosstalk analyses are carried out in 2D simulation using Mentor’s HyperLynx.

To read this entire article, which appeared in the August 2018 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

Libraries: A Must-have for Design

06/17/2019 | Dan Feinberg
I-Connect007 was invited to attend a session of the Orange County Chapter of the IPC Designers Council (DC). Even though I have been an IPC member for over half a century (yes, almost since vacuum tubes dominated design), this was my first DC event.

Stitching Capacitor: Crosstalk Mitigation for Return Path Discontinuity

06/13/2019 | Chang Fei Yee, Keysight Technologies
When the return path is broken due to the switching of reference planes with different potential, e.g., from ground to power or vice versa after layer transition on PCB, the return current might detour and propagate on a longer path, which causes a rise in loop inductance. This might lead to the sharing of a common return path by different signals that pose a high risk of interference among the signals due to higher mutual inductance. This interference results in signal crosstalk. To mitigate the crosstalk due to return path discontinuity (RPD), stitching capacitors are mounted on the PCB to serve as a bridge between the two reference planes of interest on different PCB layers.

Wild River, eSilicon, and Samtec Team up for 112-Gbps Test Vehicle

06/06/2019 | Andy Shaughnessy, Design007 Magazine
During DesignCon, I sat down for an interview with Tim Horel from eSilicon, Al Neves of Wild River Technology, and Matt Burns from Samtec. They’ve recently teamed up to create a 112-Gbps test vehicle that may be the first of its kind of test fixture.



Copyright © 2019 I-Connect007. All rights reserved.