Exciting New Technology: Thermal Risk Management


Reading time ( words)

Two years ago I entered into a collaboration with Dr. Johannes Adam, from Leimen Germany. Johannes has written a software simulation tool called Thermal Risk Management (TRM). We used it to look at the thermal characteristics of PCB traces under a variety of conditions, and it is hard for me to contain my excitement and enthusiasm for what it does and what we learned about traces using it. Our collaboration resulted in the publication of numerous articles and a book. In this article, I’ll talk about some of the capabilities of TRM that really caught my attention. (Note: TRM has much more power than I will have space to discuss in this article. See the technical note at the end of the article for more on this.)

TRM allows us to model a PCB trace and predict its thermal properties. So the first thing we did was model a variety of traces and compare the results with the data in IPC-2152. The data fit very well, giving us confidence that the process was valid. But if the software could fit a single trace in isolation, then it could also predict the temperature of a trace under a variety of other conditions that board designers more typically face, such as changes in length, the proximity of adjacent traces, and the presence of planes. For example, Figure 1 illustrates the thermal patterns around a trace with and without a plane directly under the trace. The presence of a plane clearly lowers the trace temperature and widens the area of the board where the thermal profile spreads.

But TRM also allows us to view things in many other dimensions. For example, Figure 2 shows the thermal profile of a cross-sectional view of the board underneath the trace. The thermal profile underneath the trace through the board without the plane extends all the way to the far side, but the thermal profile of the board with the plane changes dramatically at the plane. I know of no other way to look at this profile other than with a computer simulation.

To read this entire article, which appeared in the February 2017 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Libraries: A Must-have for Design

06/17/2019 | Dan Feinberg
I-Connect007 was invited to attend a session of the Orange County Chapter of the IPC Designers Council (DC). Even though I have been an IPC member for over half a century (yes, almost since vacuum tubes dominated design), this was my first DC event.

Stitching Capacitor: Crosstalk Mitigation for Return Path Discontinuity

06/13/2019 | Chang Fei Yee, Keysight Technologies
When the return path is broken due to the switching of reference planes with different potential, e.g., from ground to power or vice versa after layer transition on PCB, the return current might detour and propagate on a longer path, which causes a rise in loop inductance. This might lead to the sharing of a common return path by different signals that pose a high risk of interference among the signals due to higher mutual inductance. This interference results in signal crosstalk. To mitigate the crosstalk due to return path discontinuity (RPD), stitching capacitors are mounted on the PCB to serve as a bridge between the two reference planes of interest on different PCB layers.

Wild River, eSilicon, and Samtec Team up for 112-Gbps Test Vehicle

06/06/2019 | Andy Shaughnessy, Design007 Magazine
During DesignCon, I sat down for an interview with Tim Horel from eSilicon, Al Neves of Wild River Technology, and Matt Burns from Samtec. They’ve recently teamed up to create a 112-Gbps test vehicle that may be the first of its kind of test fixture.



Copyright © 2019 I-Connect007. All rights reserved.