Beyond Design: How to Handle the Dreaded Danglers, Part 2


Reading time ( words)

In Part 1 of this series, I deliberated on how dangling via stubs distort signals passing through an interconnect and also decrease the usable bandwidth of the signal. This is due to the via stub acting as a transmission line antenna, which has a resonant frequency determined by the quarter wavelength of the structure. The conventional solution to this problem is to back-drill (or control depth drill) the vias to bore out the via stub barrels, so that the via stubs are reduced in length if not completely removed. This month I will look into all the possible solutions to alleviate this issue.

 1. Back-drill the stub

Back-drilling is a process to remove the stub portion of a plated through-hole (PTH) via. It is a post-fabrication drilling process where the back-drilled hole is of larger diameter than the original PTH. This technology is often used instead of blind via technology to remove the stubs of connector vias in very thick high-speed backplane designs. State-of-the-art board fabrication shops are able to back-drill to within 8 mils of the signal layer, so there will always be a small stub portion attached to the via.

High-speed, SERDES, serial link-based backplanes generally have thick substrates. This is due to the system architecture and backplane to card interconnect requirements such as press-fit connectors. Back-drilling the via stub is a common practice, on thick PCBs, to minimize stub length for bit-rates greater than 3Gbps (1.5GHz). However, at transmission rates >10Gbps (5GHz), back-drilling alone may not be adequate to reduce jitter and bit error rate (BER).

Figure 1 shows the effects of excessively long via stubs on a high-speed differential pair. On the left, the differential pair is simulated using a pseudo random bit stream (PRBS) with lossy transmission lines enabled; note the open eye pattern. However, on the right, I had included via modelling, which enables the via parasitics and highlights the effects of via resonance. The high-frequency harmonics are attenuated, rolling off the signal rise time, distorting the signal, reducing bandwidth and closing the eye.

Vias can appear as capacitive and/or inductive discontinuities. These parasitics contribute to the degradation of the signal as it passes through the via. At high frequencies and with thick backplane substrates, it is imperative that these issues are addressed.

Back-drilling typically requires specialized equipment, and further requires that the back-drill be precisely located over the vias. As such, the back-drilling process, especially two sided back-drilling, is expensive due to drill breakage and yield issues and is very time-consuming.

To read this entire article, which appeared in the September 2016 issue of The PCB Design Magazine, click here.

Share




Suggested Items

HyperLynx: There’s an App for That

08/05/2022 | I-Connect007 Editorial Team
I recently spoke with Todd Westerhoff, product marketing manager for signal integrity software tools at Siemens. We discussed a new capability called HyperLynx Apps that offers a new take on traditional signal and power integrity analysis, and how that fits in with the Siemens plan to put SI and PI tools into the hands of more designers early in the design cycle.

Webinar Review: Thermal Integrity of High-Performance PCB Design

08/01/2022 | Andy Shaughnessy, Design007 Magazine
Electrical and mechanical engineers may be working on the same product development teams, but they speak different languages, and they have completely different objectives. As a result, these folks almost never use the same software tools. But Cadence’s new Celsius Thermal Solver is an exception to the rule. In a new CadenceTECHTALK webinar, “How Static and Dynamic IR Drop Analysis Can Help PCB Designs and Challenges,” product manager Melika Roshandell and SerDes SI/PI engineer Karthik Mahesh Rao explain how the EE and ME can both use the Celsius Thermal Solver to achieve their disparate objectives.

Book Excerpt: 'An Introduction to The Printed Circuit Designer’s Guide to… Stackups'

10/06/2022 | I-Connect007
To give readers a sample of 'The Printed Circuit Designer’s Guide to... Stackups—The Design within the Design,' by Bill Hargin, we are providing the book's introduction. He writes, "Another book about stackups? If you’re asking this question, I’d like to know the book you’re thinking of, as I was looking for it a few years back. I have a pretty good PCB signal integrity (SI) library, and I’ve only found one chapter on stackup design so far."



Copyright © 2022 I-Connect007 | IPC Publishing Group Inc. All rights reserved.