Decoupling Capacitors’ Impact on Power and Signal Integrity


Reading time ( words)

This article will discuss the effect of decoupling capacitors upon a PCB’s power and signal integrity. The study was performed with post-layout co-simulation of power and signal integrity to analyze power distribution network impedance, simultaneous switching noise, and eye diagrams.

Introduction

It is crucial for hardware designers to identify the resonant frequency of each element (e.g., bypass/decoupling capacitor, planar capacitance, and interconnect inductance) of the power distribution network (PDN) on a PCB and its impact on power integrity. A PCB with poor power integrity—such as a higher-than-targeted PDN impedance across the wideband range—results in simultaneous switching noise (SSN) and a shrunken eye diagram of the signal transmitted by the IC that draws power from the PDN. This article demonstrates the post-layout co-simulation of power and signal integrity using Mentor HyperLynx to analyze the impact of decoupling capacitors upon PDN impedance, SSN, and eye diagrams.

Analysis and Results

A PCB containing a system-on-a-chip (SoC) with DDR4 memory interface is laid out. In Figure 1a, the PDN named 1.2V on layer 4 supplies power to a memory interface that consists of one memory IC highlighted in blue. Meanwhile, the ground or reference plane, highlighted in green, is laid out on layer 5. The memory IC has 13 BGA power pins. The footprint of the 0.22-uF decoupling capacitor (highlighted in brown) in a 0201 package dimension is placed across each of the power pins and the ground. Additionally, the footprint of bypass capacitors, 10 uF and a 1 uF respectively (highlighted in brown as well), is placed across the 1.2V power net and ground. The eight data signals of this memory interface are shown in Figure 1b.

To view the rest of this article, which appeared in the August 2019 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

Why We Simulate

04/29/2021 | Bill Hargin, Z-zero
When Bill Hargin was cutting his teeth in high-speed PCB design some 25 years ago, speeds were slow, layer counts were low, dielectric constants and loss tangents were high, design margins were wide, copper roughness didn’t matter, and glass-weave styles didn’t matter. Dielectrics were called “FR-4” and their properties didn’t matter much. A fast PCI bus operated at just 66 MHz. Times have certainly changed.

Alternatives to Simulation

04/23/2021 | Dan Beeker, NXP Semiconductors
We are living in an age where the demands on electronic product designs are constantly evolving. The IC technology and operating speeds continue to pose significant challenges for teams as they work to develop their products. The increased transistor switching speeds and less forgiving compliance standards make signal integrity and electro-magnetic compliance more difficult to achieve. The status quo seems to have become, “We expect to fail EMC testing.”

Bridging the Simulation Tool Divide

04/12/2021 | I-Connect007 Editorial Team
Todd Westerhoff of Siemens EDA recently spoke with the I-Connect007 Editorial Team about the divide between users of high-powered enterprise simulation tools and those who need a more practical tool for everyday use, and how Siemens is working to bridge the gap. Todd also shared his views on why so many engineers do not use simulation, as well as advice for engineers just getting started with simulation tools.



Copyright © 2021 I-Connect007. All rights reserved.