PCB Reliability: Via Design


Reading time ( words)

When considering the long-term reliability of a PCB, you must take into account any vias on your board. While an invaluable and essential part of board design, vias introduce weaknesses and affect solderability. This article will discuss vias, the potential concerns that are introduced into your board through their implementation, and how to minimize those concerns to acceptable levels.

The first rule for via design is simple—bigger is better. Larger vias have greater mechanical strength as well as greater electrical and thermal conductivity. While space is always a consideration when it comes to PCB design, vias should have a minimum drill width of 20 mils with an annular ring of 7 mils and a minimum aspect ratio of 6:1. For many boards, this may be an unachievable goal; however, the basic premise of “bigger is better” stands true.

When a PCB is exposed to thermal changes in its processing or end working environment, the varying coefficient of thermal expansion (CTE) between the laminate and the copper can cause issues. PCBs are constrained through structural latticework to limit horizontal expansion but can expand and contract significantly in the vertical direction. As copper expands and contracts at slightly less than one-fourth of the rate of FR-4 laminate, vias are being pulled apart every time the board is heated. If the board is too thick and the copper in the via too thin, then the board will expand too much, and the copper will break, tearing the via apart. In the previous example, to get the appropriate aspect ratio with a drill width of 20 mils, this would result in a total pad diameter of 34 mils and allow a max board thickness of 120 mils.

Via size is important, but location is paramount. If a via is located close to a solder pad, a myriad of problems may arise, the foremost being the issue of solder wicking. As the via heats up, it pulls solder from the solder pad, through the via, and onto the other side of the board, leaving the pad either solder-deficient or completely solder-free. The larger the via, the more solder will likely wick away, making it less likely that you will have a solid mechanical and electrical joint. Fortunately, this concern can be fixed by any of three no-cost methods.

Providing a solder mask between the lead and the via creates a barrier to the movement of the solder. This is a simple yet effective method, though it does have its drawbacks. Due to the minimum width required for solder mask, this may require the via to be moved even farther from the lead. The distances required may seem minimal (in the 2–5-mil range). When space is at a premium or the board is carrying high-frequency signals, this may have a profound effect on your design. However, when these aren’t issues, this is a great way to avoid solder wicking concerns.

If there is no space to move the via and you need to minimize the via size, it is possible to use an encroached or tented via. By masking the via pad, you save space and also make it possible to silkscreen over the via. However, this makes it impossible to use the via as a test point as the copper will no longer be accessible. At this point, you need to decide whether an encroached or tented via is best. A tented via is completely sealed and will create a better surface for silkscreening as well as a better barrier against contamination. This barrier works both ways, though.

To read the full article, which appeared in the July 2019 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

DFM 101: PCB Materials

04/30/2021 | Anaya Vardya, American Standard Circuits
One of the biggest challenges facing PCB designers is understanding the cost drivers in the PCB manufacturing process. This article is the first in a series that will discuss these cost drivers (from the PCB manufacturer’s perspective) and the design decisions that will impact product reliability.

Karen McConnell: Recipient of the IPC Raymond E. Pritchard Hall of Fame Award

03/11/2021 | Patty Goldman, I-Connect007
"I heard about IPC when I started a new job at UNISYS after graduating college. I moved from ASIC design to printed circuit boards," said Karen McConnell after being inducted into the Raymond E. Pritchard Hall of Fame. "At the time, in the late ’80s and early ’90s, there were rumors going around that printed circuit boards were going to disappear, and ASICs were going to take over the world. But something in printed circuit boards fascinated me. I minored in robotics in college as an electrical engineer and the data used to fabricate, assemble and test the boards is actually all robotic language. I was hooked."

Cadence’s Celsius: Don’t End up Holding the Hot Potato!

12/17/2020 | Clive "Max" Maxfield, Maxfield High-Tech Consulting
I was just thinking about the party game Hot Potato. It reminded me of today’s increasingly competitive marketplace: Accurate thermal analysis must be performed, and any potential issues have to be identified and addressed as early as possible in the design cycle. Otherwise the system will run into problems, market windows will be missed, and someone will be left holding the hot potato. Trust me, you do not want to be that someone.



Copyright © 2021 I-Connect007. All rights reserved.