PCB Design in the Age of IoT


Reading time ( words)

From the early days of printed circuit boards, the electronics industry has made huge strides in board materials, copper printing methods, miniaturization, rigid-flex, ELIC, EDA, and much more. Many of the devices we use in our homes, our vehicles, and in our workplaces would not be possible without this continuous evolution of PCB design and technology. And yet in 2017, we are poised to shift from evolution to revolution, driven by the idea of the Internet of Things.

By now we’ve all heard of IoT and have been presented with a multitude of definitions for it. We’ve also been presented with a set of benefits that sound nice, if not compelling: refrigerators that can tell us when to restock groceries, cars that can avoid traffic, home thermostats and lighting that can be adjusted from our offices, and so much more. But these examples trivialize what the IoT will become and the impact it will have on us. When realized, the IoT will transform our world from a collection of independent “things” into an organized system with logic, reasoning, senses, circulation, and motor skills. In other words, all of the devices and systems in our world will become an organism.

This might sound scary, and will no doubt evoke visions of dystopian societies where machines rule humans, but that’s only because movie scripts need a mechanism called an “inciting event” upon which to build an exciting story. In real life, this story doesn’t need to be scary; in fact, it holds the promise of a world of possibilities to make life safer, healthier, more convenient, and just plain better.

Imagine vehicles that can sense a problem before it occurs, and arrange for parts to be put into dealer inventory and service to be performed for you, all without you ever making a single phone call, and certainly without the roadside breakdown. Picture a farm with the intelligence to sense an increasing pest insect population and release pheromones that disrupt mating cycles—reducing the need for chemical pesticides and ultimately making our food supply safer, healthier, and more abundant.

To read this entire article, which appeared in the May 2017 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Why We Simulate

04/29/2021 | Bill Hargin, Z-zero
When Bill Hargin was cutting his teeth in high-speed PCB design some 25 years ago, speeds were slow, layer counts were low, dielectric constants and loss tangents were high, design margins were wide, copper roughness didn’t matter, and glass-weave styles didn’t matter. Dielectrics were called “FR-4” and their properties didn’t matter much. A fast PCI bus operated at just 66 MHz. Times have certainly changed.

DFM 101: PCB Materials

04/30/2021 | Anaya Vardya, American Standard Circuits
One of the biggest challenges facing PCB designers is understanding the cost drivers in the PCB manufacturing process. This article is the first in a series that will discuss these cost drivers (from the PCB manufacturer’s perspective) and the design decisions that will impact product reliability.

Eliminating ‘Garbage In, Garbage Out’ With Checks and Balances

03/26/2021 | Nick Barbin, Optimum Design Associates
The proverbial saying “garbage in, garbage out” holds true in the electronic product development world. PCB designers stand squarely in the middle of a busy information intersection flowing with inputs and outputs. Missing or bad information at the beginning of a design project will undoubtedly lead to board re-spins, increased costs, and most importantly, a delayed product release. The same can be said about the PCB designer who doesn’t provide a fully checked and comprehensive data package to the downstream manufacturers, i.e., “throwing it over the fence.”



Copyright © 2021 I-Connect007. All rights reserved.