Sensible Design: When Coatings Go Wrong

Reading time ( words)

This month, I consider some of the more common, and often very frustrating, problems that may be encountered when coating electronic circuit boards and components. I also discuss some practical solutions.

As we all know, nothing in life is straightforward. In any engineering discipline, if there is the slightest chance that something might go wrong, you can bet your bottom dollar that it will. The secret is to be prepared for it. For the purposes of this column, I’m going to concentrate on the use of conformal coatings for the protection of electronic assemblies, highlighting some of the potential pitfalls associated with the choice of coating and the method of application. In each case, I will suggest an approach that should mitigate the majority of problems you are likely to encounter.

Problem: The quality and performance of a conformal coating material could be compromised according to the method of application.

This issue is commonly encountered when a product is transferred from one circuit manufacturer to another; for example, a product may be dip-coated in one country but selectively coated in another, with the specification requiring that the same material be used at both sites. The problem that arises here, however, is that using a material formulated for dip-coating in selective coating equipment can result in poor yield due to excessively fast drying and bubble entrapment.

One of my customers spent six months trying to solve a bubble issue internally, without realising that the root cause of this problem lay in the material formulation. After working with the customer, we found that by changing the solvent blend, the bubble entrapment issue could easily be resolved. Moreover, this solution simplified the process and reduced the cycle time. And since the non-volatile formulation remained the same, there was no need to re-qualify.

Problem: Achieving incorrect coating thickness, especially with acrylics.

The IPC specification allows a dry film thickness of between 30 and 130 microns, with the greater thickness being achieved by the application of multiple coating layers. Trying to achieve a 130-micron dry film thickness from a single selective-coating process with a solvent-based acrylic material is a recipe for a disaster, likely to result in excessive bubble formation, film shrinkage, coating delamination and additional stress on components. The result is poorer protection, rather than an improved overall level of circuit protection. Aiming for a uniform 30-50 microns and focusing on achieving perfect coverage at each application is a much better approach to improving the protection of electronic circuits.

Achieving the correct coating thickness is important; bear in mind that if the coating is too thick it can lead to entrapment of solvents in areas where the coating does not fully cure. Similarly, it can cause the coating to crack as it cures or as the result of changes in temperature, or due to mechanical shock and vibration. 

To read this entire article, which appeared in the July 2016 issue of The PCB Design Magazine, click here.


Suggested Items

IPC-2581 Demo Draws a Crowd at IPC APEX EXPO

03/21/2018 | Real Time with...IPC
During IPC APEX EXPO 2018, the IPC-2581 Consortium held a demo of this open-source data transfer standard, attracting numerous designers, fabricators and assembly providers. Jim Pierce of Axiom Electronics and Bob Miklosey of Aegis Software sat down to discuss the demo and their involvement with the consortium. Axiom now charges more for designs submitted in the Gerber format.

Still Using 1980s Formats for Design Data Handoff?

03/09/2018 | Hemant Shah and Ed Acheson, Cadence Design Systems
The IPC-2581 format was created in the early 2000s with the merger of two competing formats: ODB++ and GENCAM. The new format, the brainchild of the late Dieter Bergman, languished with no adoption until 2011, when a small group of companies created the IPC-2581 Consortium with the goal of getting this open, neutral and intelligent format adopted. The consortium has been growing steadily in recent years. Its membership now includes more than 100 associate members in addition to its more than 90 corporate members.

RTW IPC APEX EXPO: Polar Instruments Discusses New Engineer, SpeedStack Upgrades

03/07/2018 | Real Time with...IPC
During IPC APEX EXPO 2018, Polar Instruments' Lupita Maurer and Geoffrey Hazelett sat down with Editor Andy Shaughnessy to discuss upgrades to their SpeedStack tool and Lupita's new position with the company.

Copyright © 2018 I-Connect007. All rights reserved.