Lightning Speed Laminates: The Dilemma--Soldermask for High-Frequency PCBs


Reading time ( words)

High-frequency and high-speed digital PCBs may not have issues with soldermask. However, depending on their construction, other PCBs can have an issue with soldermask causing degraded electrical performance. PCBs with a stripline structure, in which the signal layer is buried within a multilayer, typically do not have an issue with electrical performance degradation due to soldermask. Soldermask can impact PCBs with RF circuitry on the outer layers, which can lessen high-frequency electrical performance.

Typically, PCBs with RF traces on the outer layers have minimal or no soldermask in the RF circuitry areas. Many times the soldermask is applied in areas where components are soldered to the PCB but the soldermask is developed away in the areas where conductors have critical RF performance. There are many reasons to avoid soldermask coverage on RF conductors, due to inherent soldermask properties. Most soldermask used in the PCB industry is liquid photoimageable (LPI), which is typically high in dissipation factor (Df) and high in moisture absorption, and the thickness can vary due to processing or design.

The typical soldermask has a dissipation factor of about 0.025 when tested at 1 GHz, and moisture absorption is about 1–2% depending on the formulation. For comparison, many high-frequency laminates have a Df value of about 0.005 or better and moisture absorption is typically no worse than 0.3%. The higher Df property of soldermask raises the circuit’s dielectric loss, which causes an increase in insertion loss. The moisture absorption can cause differences in impedance and phase response, but it is typically more problematic for losses where it can cause increased insertion loss.

Another point to consider is that RF circuitry on the outer layer of a PCB will usually be a microstrip or grounded coplanar waveguide (GCPW) structure. Both of these structures can have lower insertion loss and they get some loss benefit due to their fields using air. Air is the lowest-loss medium for electromagnetic waves, and these waves use electric and magnetic fields. When a microstrip or GCPW is covered with soldermask, some of the fields which were using air as the dielectric medium are now using soldermask instead.

To read this entire article, which appeared in the June 2016 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Mentor’s Cristian Filip Discusses His Award-winning DesignCon Paper

03/21/2019 | Andy Shaughnessy, Design007 Magazine
During DesignCon, I met with Cristian Filip, a senior product architect with Mentor, a Siemens business. Cristian had just received word that his paper had won a DesignCon Best Paper award—his second such award in three years. I asked Cristian to discuss his paper and how this technology can help improve manufacturing yields at high volumes.

Todd Westerhoff Discusses His New Position and Much More

03/07/2019 | Andy Shaughnessy, Design007 Magazine
At DesignCon, I met with our old friend Todd Westerhoff, a veteran signal integrity engineer. Todd joined Mentor, a Siemens Business, since we last spoke. We discussed his new job responsibilities, his drive to get more designers and engineers to use SI tools, and the increasing value of cost-reduced design techniques versus overdesigning PCBs.

Casper van Doorne Discusses His AltiumLive Class, IoT, and More

02/25/2019 | Andy Shaughnessy, Design007 Magazine
What’s in a name? When PCB designer Casper van Doorne needed to choose a name for his service bureau, only one name would do—Doofenshmirtz Evil Incorporated, a villainous name familiar to fans of Walt Disney. At AltiumLive Munich, I spoke with Casper about his company, the class he presented in Munich, and some of the benefits and ramifications of the growth of IoT.



Copyright © 2019 I-Connect007. All rights reserved.