Lightning Speed Laminates: The Dilemma--Soldermask for High-Frequency PCBs

Reading time ( words)

High-frequency and high-speed digital PCBs may not have issues with soldermask. However, depending on their construction, other PCBs can have an issue with soldermask causing degraded electrical performance. PCBs with a stripline structure, in which the signal layer is buried within a multilayer, typically do not have an issue with electrical performance degradation due to soldermask. Soldermask can impact PCBs with RF circuitry on the outer layers, which can lessen high-frequency electrical performance.

Typically, PCBs with RF traces on the outer layers have minimal or no soldermask in the RF circuitry areas. Many times the soldermask is applied in areas where components are soldered to the PCB but the soldermask is developed away in the areas where conductors have critical RF performance. There are many reasons to avoid soldermask coverage on RF conductors, due to inherent soldermask properties. Most soldermask used in the PCB industry is liquid photoimageable (LPI), which is typically high in dissipation factor (Df) and high in moisture absorption, and the thickness can vary due to processing or design.

The typical soldermask has a dissipation factor of about 0.025 when tested at 1 GHz, and moisture absorption is about 1–2% depending on the formulation. For comparison, many high-frequency laminates have a Df value of about 0.005 or better and moisture absorption is typically no worse than 0.3%. The higher Df property of soldermask raises the circuit’s dielectric loss, which causes an increase in insertion loss. The moisture absorption can cause differences in impedance and phase response, but it is typically more problematic for losses where it can cause increased insertion loss.

Another point to consider is that RF circuitry on the outer layer of a PCB will usually be a microstrip or grounded coplanar waveguide (GCPW) structure. Both of these structures can have lower insertion loss and they get some loss benefit due to their fields using air. Air is the lowest-loss medium for electromagnetic waves, and these waves use electric and magnetic fields. When a microstrip or GCPW is covered with soldermask, some of the fields which were using air as the dielectric medium are now using soldermask instead.

To read this entire article, which appeared in the June 2016 issue of The PCB Design Magazine, click here.



Suggested Items

Stitching Capacitor: Crosstalk Mitigation for Return Path Discontinuity

06/13/2019 | Chang Fei Yee, Keysight Technologies
When the return path is broken due to the switching of reference planes with different potential, e.g., from ground to power or vice versa after layer transition on PCB, the return current might detour and propagate on a longer path, which causes a rise in loop inductance. This might lead to the sharing of a common return path by different signals that pose a high risk of interference among the signals due to higher mutual inductance. This interference results in signal crosstalk. To mitigate the crosstalk due to return path discontinuity (RPD), stitching capacitors are mounted on the PCB to serve as a bridge between the two reference planes of interest on different PCB layers.

Freedom CAD Book Excerpt: The Printed Circuit Designer’s Guide to… Executing Complex PCBs

05/31/2019 | Scott Miller, FreedomCAD Services
The following is an excerpt from Chapter 5 of "The Printed Circuit Designer’s Guide to… Executing Complex PCBs," written by Scott Miller of Freedom CAD Services.

Technically Appropriate Material Choices are Key to Design Success

05/16/2019 | Nolan Johnson, I-Connect007
Materials are no longer a passive part of the design; they play an active role in the manufacturability, reliability, and speed of a PCB. I-Connect007’s Nolan Johnson and Mike Creeden, founder of San Diego PCB Design, discuss several key characteristics that designers should consider in their material selection process.

Copyright © 2019 I-Connect007. All rights reserved.