Beyond Design: DDR3/4 Fly-by vs. T-topology Routing


Reading time ( words)

JEDEC introduced fly-by topology in the DDR3 specification for the differential clock, address, command and control signals. The advantage of fly-by topology is that it supports higher-frequency operation, reduces the quantity and length of stubs and consequently improves signal integrity and timing on heavily loaded signals. Fly-by topology also reduces simultaneous switching noise (SSN) by deliberately causing flight-time skew, between the address group and the point-to-point topology signals, of the data groups. To account for this skew, the DDR3/4 controller supports write leveling. The controller must add the write leveling delays to each byte lane to maintain the strobe to clock requirement at the SDRAMs.

T-topology can be challenging to route, particularly double T-topology with four back-to-back SDRAMs, but it can be advantageous when using multi-die packages. The fly-by topology used in Figure 3 is much easier to route but does not work well with high-capacitance loads, such as LPDDR3 DDP (double die package) and QDP (quad die package) devices. IC fabricators basically arrange dies in parallel to increase package density which can also increase input capacitance by up to four times. Excessive ring-back is often present in the first few nodes of the daisy chain.

This is the reason why the T-topology was developed. However, if you are supporting only SDP (single die package) devices, then the fly-by is the most straightforward approach. It doesn't matter which topology you use, though—both fly-by and double T-topologies should work fine. If you are using a DDP device, then double-T topology works better than fly-by in terms of delivering a better system margin.

During a write cycle, using the fly-by topology, data strobe groups are launched at separate intervals to coincide with the clock arriving at memory components on the SODIMM or PCB, and must meet the timing parameter between the memory clock and DQS defined as tDQSS of ± 0.25 tCK. The PCB design process can be simplified using the leveling feature of the DDR3/4. The fly-by, daisy chain topology increases the complexity of the controller design to achieve leveling but fortunately, greatly improves performance and eases board layout for DDR3/4 designs.

To read this entire article, which appeared in the April 2016 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Design Rules Recipe: Solvability, Manufacturability, and Performance

06/06/2019 | I-Connect007 Editorial Team
One thing that we’ve noticed lately: Each designer seems to have his or her own way of using PCB design rules. There doesn’t seem to be much agreement about setting or using design rules. So, in this true experts panel, Mike Creeden of San Diego PCB joined Freedom CAD’s Scott McCurdy, Jay Carbone, and Rich Kluever to share their views on PCB design rules.

Wild River, eSilicon, and Samtec Team up for 112-Gbps Test Vehicle

06/06/2019 | Andy Shaughnessy, Design007 Magazine
During DesignCon, I sat down for an interview with Tim Horel from eSilicon, Al Neves of Wild River Technology, and Matt Burns from Samtec. They’ve recently teamed up to create a 112-Gbps test vehicle that may be the first of its kind of test fixture.

Technically Appropriate Material Choices are Key to Design Success

05/16/2019 | Nolan Johnson, I-Connect007
Materials are no longer a passive part of the design; they play an active role in the manufacturability, reliability, and speed of a PCB. I-Connect007’s Nolan Johnson and Mike Creeden, founder of San Diego PCB Design, discuss several key characteristics that designers should consider in their material selection process.



Copyright © 2019 I-Connect007. All rights reserved.