Behind the Scenes: Adcom’s TLA Award-Winning Design


Reading time ( words)

Many of you are familiar with Mentor Graphics’ Technology Leadership Award program. Adcom’s design team placed first in this year’s TLA program, taking the top spot for the category of “Computers, Blade & Servers, Memory Systems.” This article will focus on the development of that board.

This board, like most PCBs today, is a complex system designed by a multi-disciplinary team of designers, striving to bring an operational product to the market on schedule. In the case reported here, the deadline for a fabricated feasibility board was set to eight months. Within this time frame, the team had to design a product complying with demanding specs, such as the Arria 10 FPGA, PCIe 3.0, Hybrid Memory Cube (HMC) and Avago MicroPOD, as well as complying with IPC class 2 manufacturing standards.

Challenges arrived in many forms. For example, as data transfer rates are continually increasing, PCIe now runs at 8GHz. Also, operating IC voltages are lower and power requirements for various components are higher. More challenges lay in the form of small form factor of ICs and high-speed transceiver protocols. All of this requires advanced PCB fabrication technologies. The design teams need to work in union over a short design-cycle time, and provide early proof of concept. The work flow should incorporate the processes of modeling, optimization and analysis.

The outcome of this process was the delivery of an almost flawless feasibility board on the first shot. There was no need for a second version, thanks to the effort invested in overall simulation at the design and layout phase.

Requirements Implemented in Design Flow

This board was developed as a proof of concept for a very high-density data processing unit using high-speed memories and interfaces. Components included a 20 nm FPGA, advanced memory devices such as DDR4 and HMC transceivers of 15Gbps, 10Gbps and 8Gbps, and power circuits, all connected to a PCIe device. The area provided for the design was 200 mm X 200 mm with PCB thickness limited to 1.6 mm.

The major design challenges that had to be tackled were the 100A current consumption of the FPGA core, the routing of 16 HMC transceivers operating at 15GHz, and the clock tree design for optimal frequency programmability.

The design team included one FPGA designer, one librarian, three PCB designers, two layout designers, and a mechanical designer (outsourced).

To read this entire article, which appeared in the April 2015 issue of The PCB Design Magazine, click here.

Share


Suggested Items

EDADOC: A Driving Force in China's Automotive Electronics Design

05/21/2018 | Edy Yu, I-Connect007
EDADOC is one of the biggest providers of PCB design and manufacturing services in China, with a long history in automotive electronics design and manufacturing. China Editor Edy Yu recently conducted an email interview with EDADOC R&D Technical Research Manager William Zhou and Brand Planning Specialist Wen Ling, who collaborated on their answers. We discussed the challenges related to designing and fabricating automotive PCBs, the opportunities in this segment, and the trends they see in the market for autonomous and electric vehicles.

Zuken Pulling Ahead in Automotive PCB Design

05/07/2018 | Andy Shaughnessy, Design007 Magazine
Zuken has been developing PCB design tools for the automotive market for years. With automotive electronics worth over $200 billion globally, and growing every day, Zuken is preparing for a brave new world of smart cars, and autonomous and electric vehicles. I spoke with Humair Mandavia, chief strategy officer with Zuken, and asked him about the challenges facing automotive PCB designers, and the trends he’s seeing in this constantly evolving segment of the industry.

Fadi Deek Discusses Mentor’s New Power Integrity eBook

04/22/2018 | Andy Shaughnessy, Design007 Magazine
At DesignCon 2018, I ran into Mentor’s Fadi Deek, the author of both of Mentor’s I-Connect007 eBooks: the newest, "The Printed Circuit Designer’s Guide to Power Integrity by Example," and their first book, "The Printed Circuit Designer’s Guide to Signal Integrity by Example." We sat down and discussed how the idea for the books came about, as well as some of the power integrity challenges facing PCB designers and engineers.



Copyright © 2018 I-Connect007. All rights reserved.