Failure Mode: Hole Wall Pullaway


Reading time ( words)

Hole wall pullaway (HWPA) is an insidious defect that is not usually a cause of electrical failure. What happens with HWPA is that the copper plating in a plated through-hole (PTH) is pulled away from the dielectric of the drilled hole wall. The hole must not be filled with any sort of a hole fill in order to see HWPA.

There are two distinct types of HWPA: stress-relieving and stress-inducing. In stress-relieving HWPA, the condition appears to distress the PTH, allowing it to survive hundreds or thousands of thermal cycles without failure. In stress-inducing HWPA, the stress appears to greatly increase, causing the PTH to fail in just a few thermal cycles. What we consider a failure is an increase greater than 10% in the overall resistance in the circuit. A crack that partially bridges the copper at the internal interface is enough to cause a failure.

This column is based on my experience in test reliability of interconnect stress test (IST) coupons. I am addressing HWPA that features moderate to severe outgassing. There may be HWPA due to thermal stressing of the board without any significant outgassing, but this type of HWPA is subtle, and it presents as a dark line between the plating and the dielectric of the hole wall. This type of HWPA is rarely detected.

Stress-Relieving HWPA

Stress-relieving is the most common type of HWPA. It appears that the adhesion of copper plating to the dielectric is reduced most likely due to problems with the application of electroless copper plating adhering to the dielectric of the hole wall. At the same time, the adhesion is strong at the copper’s internal interconnection. In fact, experience suggests that the adhesion of the electroless copper is stronger than the copper plating. This process frequently produces strong interconnections to copper inner layers. This condition may result in a hole wall that looks like a stack of forward or backward “Ds” running the length of the hole where the top and the bottom of the “Ds” is at an internal interconnect.

To read this entire article, which appeared in the August 2015 issue of The PCB Design Magazine, click here

Share


Suggested Items

Designers Notebook: Specifying Lead-Free Compatible Surface Finish and Coating for Solderability and Surface Protection

07/06/2016 | Vern Solberg, Consultant
A majority of the components furnished for electronic assembly are designed for solder attachment to metalized land patterns specifically designed for each device type. Providing a solder process-compatible surface finish on these land patterns is vital; however, selection of the surface finish on the circuit structure, whether plated or coated, can be greatly influenced by the components’ terminal metalization and the specific alloy composition used for the assembly process.

Rogers’ John Coonrod on Insertion Loss

06/20/2016 | Barry Matties, I-Connect007
John Coonrod of Rogers Corporation gave a keynote presentation at the recent Geek-A-Palooza trade show, concentrating on printed circuit board fabrication’s influences on insertion loss. I sat down with John to learn more about his presentation and what OEMs and designers need to be aware of to avoid insertion loss.

Lightning Speed Laminates: Impact of Final Plated Finish on PCB Loss

11/04/2015 | John Coonrod, Rogers Corporation
A variety of plated finishes are used in the PCB industry. Depending on the circuit construction and other variables, the plated finish can cause an increase in PCB insertion loss. The plated finish used on the outer ground planes of a stripline circuit have minimal or no impact on insertion loss. However, microstrip or grounded coplanar waveguide circuits, which are common on the outer layers of multilayer high-frequency PCBs, can be impacted by the plated finish for increasing the insertion loss.



Copyright © 2018 I-Connect007. All rights reserved.