Material Witness: Low-Flow Prepregs–Defining the Process


Reading time ( words)

One of my favorite authors once wrote about perception:  “For now we see in a mirror, dimly…” speaking in an era when mirrors were at best polished metal surfaces.  In the infancy of low-flow products, we used to speak about “no-flow” prepregs as if “no-flow” was sufficient definition of the product, but as we have recently pointed out in our discussions of rheology, “everything flows.” And as we consider these increasingly essential but sometimes hard-to-define products, much consideration will have to be given to what the products need to do, how they do it, how we test them, what the testing means, and how or if the testing relates meaningfully to how the products work in a PWB rigid-flex production environment.

Let’s try to define “low flow” in terms that will make sense to both suppliers and users of the products.  A low-flow prepreg is a prepreg that flows sufficiently to wet out and adhere to bonding surfaces and to fill inner layer copper details, but does not flow so much as to fill in cut-out areas in a heat sink or run unevenly out of the interface between rigid and flexible elements of a rigid-flex PWB.  That being said, how to define that flow quantitatively and to control it in such a way that the resulting product has wide applicability in a variety of PWB heat-sink and rigid-flex designs has been an issue with both producers and users of the products since the introduction of the concept.  (My personal involvement in low flow materials began in the Early Mesozoic Period.)

 

guiles new Fig1.JPG

Guiles Fig2.JPG

How low is low flow compared to “normal” prepregs?  Figure 1, the chart labeled as 35N Rheology, and Figure 2, 47N Rheology, are respectively a standard polyimide prepreg—35N—with a minimum viscosity about 800 poise at heat-up rate 5oC/minute, and a standard epoxy low-flow product—47N—with  a minimum viscosity about 8000 poise at heat-up rate of 5oC/minute. As you can see, the viscosity of the low-flow product is about an order of magnitude higher than that of the full-flow prepreg. 

Note also that as the heat-up rate is adjusted, the minimum viscosity of the low-flow product behaves similar to that of a standard-flow resin.  As the heat-up rate increases, the minimum melt viscosity is lower, and hence, the product will flow more, all other conditions being equal.  If only it were practical to use a three-temperature ramp rate test to characterize low-flow products during manufacture! 

Instead, we have an IPC test procedure (IPC TM-650 2.3.17.2) that defines low flow in terms of average reduction of the diameter of a cut-out circle when the material is tested under “standard” conditions of temperature and pressure. 

Share


Suggested Items

Chuck Bauer Discusses the Future of Packaging

09/05/2018 | I-Connect007 Editorial Team
When we decided to cover the future of PCB packaging, we knew we would have to interview Charles Bauer, Ph.D., owner of TechLead Corporation. Chuck recently spoke with Happy Holden, Andy Shaughnessy and Barry Matties about current trends in packaging, the need for product designers and manufacturers to communicate, and why no matter how cool the technology is, cost is still king.

Excerpt: The Printed Circuit Designer’s Guide to…Flex and Rigid-Flex Fundamentals

06/25/2018 | Dave Lackey and Anaya Vardya, American Standard Circuits
The design process is arguably the most important part of the flex circuit procurement process. The decisions made in the design process will have a lasting impact, for better or worse, throughout the manufacturing cycle. In advance of providing important details about the actual construction of the flex circuit, it is of value to provide some sort of understanding of the expected use environment for the finished product.

Mark Thompson: What Designers Need to Know about Fab

06/08/2018 | Dan Beaulieu, D.B. Management Group
Mark Thompson wants to help PCB designers. He’s seen it all in CAM support at Prototron Circuits: the incomplete or inaccurate data packages, boards that are unnecessarily complex or over-constrained, and so much more. Mark just returned to writing his popular Design007 Magazine column, The Bare (Board) Truth, which addresses questions such as, “What happens to your design at CAM?” I asked Mark to explain why it’s so important for designers to communicate with their fabricators, and why they need to get out of the office and visit a board shop every now and then.



Copyright © 2018 I-Connect007. All rights reserved.