Component Selection for Easier Design and Manufacture of Electronics


Reading time ( words)

“Simplify, simplify, simplify.”

                      —Henry David Thoreau 

Thoreau penned his simple lifestyle mantra more than 150 years ago and it still as valid today as it was when he first captured and recorded his thoughts on paper. He was not the first to extoll the importance of simplicity, but he said it in a memorable way.

Achieving simplicity has been deemed a worthy objective by many philosophers over centuries, and people often profess to seek simplicity in their lives. In the world of high tech, simplicity is arguably one of the foundational objectives of most of the technologies that surround us today. Certainly this is true in terms of how product designers are trying to create interfaces that allow even the most nontechnical users to get what they need from electronic products with a minimum of hassle.

However, that interface simplicity is undergirded by a massively complex electromechanical substructure of circuits, sensors and components. Pop open any high-end electronic device and you will be met by an impressive mass of densely packed components and circuits. Presently, those components are available in a wide array of formats, with a number of different lead shapes and forms along with the device’s mechanical outline. Presently, there are J-leads, I-leads, gull-wing leads, posts, balls and no leads at all. Mechanical outlines are generally square and rectangular, but the bodies can have a wide range of dimensions in X, Y and Z. While area array technology has helped to make things smaller, it has also upped the complexity factor from a design perspective by mixing grids and land shapes and sizes.

Why so many options? It is because there is not, nor has there ever been, a truly coherent approach to the process of selecting package structures for ICs or any other components for that matter. Yes, a roadmap for electronic component lead pitch was introduced with the advent of SMT, and that roadmap said that every next-generation lead pitch should be 80% of the size of the previous generation lead pitch.

Read the full article here.


Editor's Note: This article originally appeared in the November 2014 issue of The PCB Design Magazine.

Share

Print


Suggested Items

Kelly Dack Teases AltiumLive 2022

01/20/2022 | Nolan Johnson, I-Connect007
AltiumLive 2022 is just around the corner! Editor Nolan Johnson chats with Guest Editor and columnist Kelly Dack, one of the event hosts for AltiumLive Connect 2022. Kelly updates Nolan on the latest about the upcoming AltiumLive virtual conference, what's on the agenda, how it's connected with IPC APEX EXPO, and what attendees can expect to find.

Real Time with… IPC APEX EXPO: Siemens’ Supply Chain Solutions

01/17/2022 | Nolan Johnson, I-Connect007
Nolan Johnson speaks with Oren Manor of Siemens Digital Industries Software about the company’s booth at IPC APEX EXPO, which will highlight a DSI platform meant to help designers find and use components in their designs during these tough supply chain challenges. If you can’t make it to IPC APEX EXPO, don’t worry. We’ll be bringing you interviews with the engineers, managers and technologists who are making a difference in our industry.

A High-Voltage PCB Design Primer

01/12/2022 | Zachariah Peterson, NWES
Of all the different boards a designer can create, a high voltage PCB design can be complicated and requires strict attention to safety. If not laid out correctly these boards can be safety hazards or can fail to function on first power up, leaving a designer with wasted time and effort. In the best case, the board will function reliably for a long period of time thanks to correct layout practices. High-voltage PCB design can be as complex as any high-speed digital design. Boards for high-voltage systems can be space constrained and they carry important safety requirements. They also need to be highly reliable to ensure they will have a long life when run at high voltage and current.



Copyright © 2022 I-Connect007. All rights reserved.