IPC-2581 Revision C: Complete Build Intent for Rigid-Flex

Reading time ( words)

With the current design transfer formats, rigid-flex designers face a hand-off conundrum. You know the situation: My rigid-flex design is done so now it is time to get this built and into the product. Reviewing the documentation reveals that there are tables to define the different stackup definitions used in the design. The cross-references for the different zones to areas of the design are all there, I think. The last time a zone definition was missed, we caused a costly mistake.

Continuing to review the design documents, I verify that the bend locations are defined with information about the radius of the bends with a detail about how the final product looks when all bending is complete, ensuring that the folds are made in the correct order. I hope all information is contained in the documentation, and there will be no calls from the fabricator delaying the product. With all these documents and details left open to interpretation, there must be a way to send this data more intelligently.

Enter IPC-2581 Revision C
There is a way to transfer this data digitally, reducing the need for various forms of drawing details in a document. The new IPC-2581 Revision C format eliminates the need to manually—and painstakingly—create these details in a fabrication drawing. It uses the design data to explicitly define the multiple aspects of a rigid-flex design. How? Let’s look at how some of the details are sent digitally.

First, let’s look at stackup and general board structure. In the design tool, the different stackup details are created, with one or more rigid stackup definitions (8-layer vs. 4-layer, etc.) as well as several flex stackup structures (1 or 2 copper layers, etc.). In my design database a boundary is defined and the stackup data is assigned to those boundaries. This data is then placed into the IPC-2581C format containing the links of each stackup to each boundary association. These are known in IPC-2581 terms as stackup groups assigned to stackup zones. A by-product of these connections is the ability to define the outline profile for each copper and dielectric layer, a key tool for the fabricator.

To read this entire article, which appeared in the March 2021 issue of Design007 Magazine, click here.



Suggested Items

Kelly Dack Teases AltiumLive 2022

01/20/2022 | Nolan Johnson, I-Connect007
AltiumLive 2022 is just around the corner! Editor Nolan Johnson chats with Guest Editor and columnist Kelly Dack, one of the event hosts for AltiumLive Connect 2022. Kelly updates Nolan on the latest about the upcoming AltiumLive virtual conference, what's on the agenda, how it's connected with IPC APEX EXPO, and what attendees can expect to find.

Real Time with… IPC APEX EXPO: Siemens’ Supply Chain Solutions

01/17/2022 | Nolan Johnson, I-Connect007
Nolan Johnson speaks with Oren Manor of Siemens Digital Industries Software about the company’s booth at IPC APEX EXPO, which will highlight a DSI platform meant to help designers find and use components in their designs during these tough supply chain challenges. If you can’t make it to IPC APEX EXPO, don’t worry. We’ll be bringing you interviews with the engineers, managers and technologists who are making a difference in our industry.

A High-Voltage PCB Design Primer

01/12/2022 | Zachariah Peterson, NWES
Of all the different boards a designer can create, a high voltage PCB design can be complicated and requires strict attention to safety. If not laid out correctly these boards can be safety hazards or can fail to function on first power up, leaving a designer with wasted time and effort. In the best case, the board will function reliably for a long period of time thanks to correct layout practices. High-voltage PCB design can be as complex as any high-speed digital design. Boards for high-voltage systems can be space constrained and they carry important safety requirements. They also need to be highly reliable to ensure they will have a long life when run at high voltage and current.

Copyright © 2022 I-Connect007. All rights reserved.