Book Excerpt: Thermal Management With Insulated Metal Substrates, Part 3

Reading time ( words)

The following is an excerpt from Chapter 3 of "The Printed Circuit Designer's Guide to... Thermal Management With Insulated Metal Substrates," written by Ventec International Group’s Didier Mauve and Ian Mayoh. In this free eBook, the authors provide PCB designers with the essential information required to understand the thermal, electrical, and mechanical characteristics of insulated metal substrate laminates.

Chapter 3: Developments in Insulated Metal Substrate Laminates
The insulated metal substrate concept is not new. Materials were available as long ago as the mid-1960s for specific niche-market applications. However, the exponential growth in LED lighting has been the main driver for the development of improved versions in volume manufacture. Insulated metal substrate laminates are now firmly established as the preferred base material for the fabrication of printed circuits for high-brightness LED lighting and DC power conversion applications because they offer cost-effective performance with straightforward fabrication, good mechanical stability, and a range of thermal conductivities to suit particular configurations.

Although thermal PCB design technology has been predominantly single-sided, multilayered constructions are now possible through resin-coated foil and resin-coated film options. The use of thermally conductive prepregs and copper clad thin laminates manufactured with them, which can be bonded to the insulated metal substrate or co-laminated with high Tg or low Dk and Df cores and prepregs, have also made multilayered constructions possible.

The recent progress made by these thermal prepregs and thin cores allow engineers to design multilayered PCBs with integrated thin thermal layers. This opens up many possibilities, particularly when convection is not an option due to space, or real estate, and the cost of additional radiators is a concern.

Dielectric Layer
The key element of an insulated metal substrate material is the thermally conductive dielectric layer between the copper foil and the aluminum plate. This may be a woven-glass reinforced-resin composite (prepreg), as in a conventional laminate construction, or a layer of unreinforced resin. The resin itself is typically a halogen-free epoxy-laminating resin. Whereas a conventional FR-4 laminate would have very poor thermal conductivity, the thermal conductivity of the resin component is significantly improved by loading it with up to 70% of a thermally-conductive ceramic filler. The resin must also continue to serve the fundamental purpose of reliably bonding the insulated metal substrate construction together under potentially severe thermal-cycling conditions.

The thermal conductivity of glass-reinforced materials is still limited by the nature of the glass, so it is the non-reinforced dielectrics that have the lowest thermal resistance. However, they demand critical control in manufacture to maintain consistency of dielectric thickness, whereas glass fabric provides a natural mechanical spacer.

To download this free eBook, published by I-Connect007, click here.

To view the entire I-Connect007 eBook library, click here.




Suggested Items

Eliminating ‘Garbage In, Garbage Out’ With Checks and Balances

03/26/2021 | Nick Barbin, Optimum Design Associates
The proverbial saying “garbage in, garbage out” holds true in the electronic product development world. PCB designers stand squarely in the middle of a busy information intersection flowing with inputs and outputs. Missing or bad information at the beginning of a design project will undoubtedly lead to board re-spins, increased costs, and most importantly, a delayed product release. The same can be said about the PCB designer who doesn’t provide a fully checked and comprehensive data package to the downstream manufacturers, i.e., “throwing it over the fence.”

Altium Introduces New Subscription Model

02/25/2021 | Andy Shaughnessy, Design007
Andy Shaughnessy chats with Lawrence Romine about Altium’s new subscription model for their Altium 365 platform. They discuss what this means for existing and future Altium customers, and some of the drivers leading to this development, including evolving use patterns among customers during the pandemic.

Seven Tips for Your Next Stackup Design

02/01/2021 | Eric Bogatin, University of Colorado, Boulder
Rarely do we have the luxury of designing a board just for connectivity. When interconnects are not transparent, we must engineer them to reduce the noise they can generate. This is where design for signal integrity, power integrity and EMC—collectively high-speed digital engineering—are so important. Eric Bogatin offers seven tips for stackup design.

Copyright © 2021 I-Connect007. All rights reserved.