Insertion Loss Performance Differences Due to Plated Finish and Circuit Structure


Reading time ( words)

Abstract

Many different final plated finishes are used in the PCB industry, each with its own influence on insertion loss. The impact of an applied finish on insertion loss generally depends on frequency, circuit thickness, and design configuration. This article will evaluate the effects of final plated finishes on the insertion loss of two popular high-frequency circuit design configurations: microstrip transmission-line circuits and grounded coplanar-waveguide (GCPW) transmission-line circuits.

Data will be presented for loss versus frequency for six different plated finishes commonly used in the PCB industry, and opinions will be offered as to why the loss behavior differs for the different plated finishes and for the different circuit configurations. Because the insertion loss of high-frequency circuits also depends on substrate thickness, circuits fabricated on substrates with different thicknesses will be evaluated to analyze the effects of substrate thickness on insertion loss using different plated thicknesses.

This article will also explore many different aspects of the final plated finishes on PCB performance. The nickel thickness in electroless nickel immersion gold (ENIG) finishes normally has some variations; data will show the effects of these variations on the RF performance of a PCB. Immersion tin is often used to minimize thickness variations and analysis will show the effects on RF performance for different thicknesses of immersion tin. The effects of plated finish on PCB performance can vary widely over frequency, and those effects will be shown for a wide range of frequencies from 1 to 100 GHz.

Insertion Loss Overview

The insertion loss of a high-frequency PCB circuit can decrease the usable signal levels of a system, whether in a receiver or a transmitter. Details on insertion loss can be found in a previous IPC paper, although a simple review of insertion loss might be helpful before examining the data on PCB final plated finishes. The total insertion loss is comprised of four loss components.

 

To read the rest of this article, which appeared in the September 2019 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

I-Connect007 Editor's Choice: Five Must-Reads for the Week

10/16/2020 | Nolan Johnson, I-Connect007
Trade shows and technical conferences haven’t died; they’ve just moved online. The trade show season continues in virtual full force this week, and event coverage dominates the top five this week. Surprisingly, I don’t see events as this week’s theme. No, this week’s theme is “pundits.” We have Walt Custer’s industry outlook, seven experts on additive electronics, a designers conference keynote, and the IPC’s government relations expert. Don’t get me wrong: These folks are asked to speak to the industry for a good reason. They know their subject matter, and they present it skillfully. This week’s top five picks are worth reading.

Just Ask John Mitchell: The Exclusive Compilation

10/05/2020 | I-Connect007 Editorial Team
We asked for you to send in your questions for IPC President and CEO John Mitchell, and you took us up on it! We know you all enjoyed reading these questions and answers, so we’ve compiled all of them into one article for easy reference. We hope you enjoy having another bite at the apple. And if you’d like to hear more from John Mitchell, view his column series “One World, One Industry.”

Just Ask John Mitchell: Blurring the Lines of Technology

09/30/2020 | I-Connect007 Editorial Team
First, we asked you to send in your questions for Happy Holden, Joe Fjelstad, and Eric Camden in our “Just Ask” series. Now, it’s IPC President and CEO John Mitchell’s turn! A regular PCB007 columnist, John focuses on many of the challenges affecting the global electronics industry supply chain. Over the years, he has served as an engineer, manager, and executive at a variety of companies and organizations. We hope you enjoy “Just Ask John.”



Copyright © 2020 I-Connect007. All rights reserved.