Development of Flexible Hybrid Electronics


Reading time ( words)

Introduction

Flexible hybrid electronics (FHE) refers to a category of flexible electronics that are made through a combination of traditional assembly process of electronic components with high-precision ink printing technologies . By integrating silicon components with printed inks and flexible substrates, FHE will revolutionize the IoT and wearable industries. With FHE, designers can create a heterogeneous electronic system that can be fully integrated with different sensors, lighter in weight, more cost effective, more flexible and conforming to the curves of a human body or even stretchable across the shape of an object or structure—all while preserving the full functionality of traditional electronic systems.

The FHE industry is still in the early stages of development, and a variety of design, material, assembly and reliability issues need to be addressed. For example, electrical interconnections formed with conductive adhesives may not be as conductive or reliable as compared to conventional solder assembly. Typical polymer-based conductive inks are not as conductive as the etched copper used to make circuit boards and they are mostly not readily solderable. Additionally, commercially available stretchable thermoplastic-based film substrates have relatively low heat resistance and cannot withstand the current lead-free reflow process temperatures.

This article will present a hybrid manufacturing process to manufacture FHE systems with a two-layer interconnect structure utilizing screen printing of silver conductive ink, filled microvias to connect ink traces at the different layers, and use of the traditional reflow process to attach the semiconductor chips to the printed substrates.

Experimental

This study is to convert a rigid multilayer wearable development platform into a flexible one using printed conductive ink and flexible substrate. The current rigid platform contains two active semiconductor components and dozens of passive devices. The largest component is the microprocessor chip. Figure 1 shows the footprint for the microprocessor chip. It is an LGA package with 8X8 array and 64 I/Os. The pad size is 250 mm and the pitch is 400 mm, which leaves the space between pads at 150 mm.

To read this entire article, which appeared in the July 2019 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

Insulectro Works to Bridge the Fabricator/Designer Gap

12/19/2019 | Barry Matties, I-Connect007
Barry Matties sat down with Insulectro’s Megan Teta and Mike Creeden to discuss trends they see in the materials market and how they’re working to bridge the gap between fabrication and design, including helping designers understand what they can do to make a board more manufacturable.

Designing for Complex PCBs

12/12/2019 | I-Connect007 Editorial Team
The I-Connect007 editorial team sat down with Freedom CAD’s Scott Miller to talk about the industry’s demand for more increasingly complex PCBs, and the challenges this presents. They also discuss Freedom CAD’s in-house training programs, the company’s recent book authored by Scott, and why communication is such an important tool in a PCB designer’s toolbox.

AltiumLive Frankfurt 2019: Happy Holden Keynote

12/12/2019 | Pete Starkey, I-Connect007
Nobody left early! Altium had wisely kept Happy Holden’s keynote presentation on “PCB Trends that Will Impact Your Future” until the end of the final day of the AltiumLive 2019 European PCB Design Summit in Frankfurt, Germany. Pete Starkey presents the highlights of Happy's presentation.



Copyright © 2020 I-Connect007. All rights reserved.