Effects of PCB Fiber Weave on High-Speed Signal Integrity


Reading time ( words)

This article studies the effect of PCB fiber weave on signal integrity in terms of mode conversion and differential channel loss due to intra-pair skew. The study used Keysight ADS 2DEM simulation to observe s-parameter (i.e., insertion loss and differential to common-mode conversion) and an eye diagram for signal transmission at 1 Gbps and 10 Gbps.

Introduction

A PCB dielectric substrate is composed of woven fiberglass that is strengthened by epoxy resin. The microscopic top view of PCB substrates of fiber weave 106 and 3313 are illustrated in Figures 1a and 1b. The thick lines in light brown color are fiberglass, while the square columns in black color are an epoxy resin. A higher-numbered configuration (e.g., 3313) denotes denser fiberglass weave.                        

Fiberglass material features dielectric properties that differ very much from the properties of the epoxy resin. For instance, NE-glass fiber has a dielectric constant (Dk) and loss tangent (Df) of 4.4 and 0.0006, respectively; meanwhile, E-glass fiber has a Dk and Df of 6.6 and 0.0012. Epoxy resin has a Dk of 3.2, which is very different than that of fiberglass. When a substrate with sparse fiber weaving is used, PCB traces could cross different regions of resin and fiberglass more frequently. As a result, the speed or propagation delay of the signal changes frequently along the trace from transmitting to receiving end.

To read this entire article, which appeared in the November 2018 Design007 Magazine, click here.

Share

Print


Suggested Items

The Impact of Inductance on Impedance of Decoupling Capacitors

08/08/2019 | Chang Fei Yee, Keysight Technologies
This article discusses the impact of interconnection inductance on the impedance of the decoupling capacitor, which influences the power integrity of the PCB. The investigation is performed with 3DEM simulation by varying the trace length and height of stitching vias that connect the decoupling capacitor across the power rail and ground.

IPC High-reliability Forum and Microvia Summit Review, Part II

08/06/2019 | Pete Starkey, I-Connect007
The Microvia Summit on May 16 was a special feature of the 2019 event in Baltimore, since microvia challenges and reliability issues have become of great concern to the PCB manufacturing industry. It provided updates on the work of members of the IPC V-TSL-MVIA Weak Interface Microvia Failures Technology Solutions Subcommittee and opportunities to learn about latest developments in methods to reveal and explain the presence of latent defects, identify causes and cures, and be able to consistently and confidently supply reliable products.

Libraries: A Must-have for Design

06/17/2019 | Dan Feinberg
I-Connect007 was invited to attend a session of the Orange County Chapter of the IPC Designers Council (DC). Even though I have been an IPC member for over half a century (yes, almost since vacuum tubes dominated design), this was my first DC event.



Copyright © 2019 I-Connect007. All rights reserved.