Effects of PCB Fiber Weave on High-Speed Signal Integrity

Reading time ( words)

This article studies the effect of PCB fiber weave on signal integrity in terms of mode conversion and differential channel loss due to intra-pair skew. The study used Keysight ADS 2DEM simulation to observe s-parameter (i.e., insertion loss and differential to common-mode conversion) and an eye diagram for signal transmission at 1 Gbps and 10 Gbps.


A PCB dielectric substrate is composed of woven fiberglass that is strengthened by epoxy resin. The microscopic top view of PCB substrates of fiber weave 106 and 3313 are illustrated in Figures 1a and 1b. The thick lines in light brown color are fiberglass, while the square columns in black color are an epoxy resin. A higher-numbered configuration (e.g., 3313) denotes denser fiberglass weave.                        

Fiberglass material features dielectric properties that differ very much from the properties of the epoxy resin. For instance, NE-glass fiber has a dielectric constant (Dk) and loss tangent (Df) of 4.4 and 0.0006, respectively; meanwhile, E-glass fiber has a Dk and Df of 6.6 and 0.0012. Epoxy resin has a Dk of 3.2, which is very different than that of fiberglass. When a substrate with sparse fiber weaving is used, PCB traces could cross different regions of resin and fiberglass more frequently. As a result, the speed or propagation delay of the signal changes frequently along the trace from transmitting to receiving end.

To read this entire article, which appeared in the November 2018 Design007 Magazine, click here.



Suggested Items

Calculation of Frequency-Dependent Effective Roughness Dielectric Parameters for Copper Foil Using Equivalent Capacitance Models

01/02/2019 | Marina Y. Koledintseva, Metamagnetics Inc.*, and Tracey Vincent, CST of America
Knowledge of the correct parameters of laminate PCB dielectrics refined from any copper foil roughness impact and the proper foil roughness characterization are important constituents of modeling high-speed digital electronics designs.

Life Beyond 10 Gbps: Localize or Fail!

11/20/2018 | Yuriy Shlepnev, Simberian
Ideally, all interconnects should look like uniform transmission lines (or wave-guiding structures) with the specified characteristic impedance. In reality, an interconnect link is typically composed of transmission lines of different types (microstrip, strip, coplanar, coaxial, etc.) and transitions between them such as vias, connectors, breakouts and so on. Transmission lines may be coupled to each other that cause crosstalk. The transitions may reflect and radiate energy due to discontinuities in signal and reference conductors. The crosstalk, reflections and radiation cause unwanted and sometime unpredictable signal degradation.

Achieving Minimal Crosstalk in Multi-board Interconnect

11/20/2018 | Chang Fei Yee, Keysight Technologies
In an electronic system, the signal transmission exists in a closed-loop form. The forward current propagates from transmitter to receiver through the signal trace. On the other hand, for a single PCB, the return current travels backward from receiver to transmitter through the ground plane closest to the signal trace. Meanwhile, for multi-board interconnect (e.g., connectivity through flex or ribbon cable), the return current travels back to the transmitter through the ground or return wire, preferably as close as possible to the signal wire. The path of forward current and return current forms a loop inductance.

Copyright © 2019 I-Connect007. All rights reserved.