Achieving Optimum Signal Integrity During Layer Transition on High-Speed PCBs


Reading time ( words)

This article discusses the impact of stitching vias and discontinued return path or reference on signal integrity during layer transition on high-speed PCBs, particularly in terms of signal reflection and crosstalk.

Introduction

In electronic systems, signal transmission exists in a closed-loop form. The forward current propagates from transmitter to receiver through the signal trace. Meanwhile, the return current travels backward from receiver to transmitter through the power or ground plane directly underneath the signal trace that serves as the reference or return path. The path of forward current and return current forms a loop inductance.

It is important to route the high-speed signal on a continuous reference plane so that the return current can propagate on the desired path beneath the signal trace. In addition to that, whenever there is signal transition from one layer to another through a via, an extra via that connects the reference planes on different PCB layers (i.e., stitching via) must be placed near the signal via to provide a continuous return path.

If the return path is broken due to the absence of a stitching via or switching of reference plane from ground to power or vice versa after layer transition on PCB, the return current might detour and propagate on a longer path, which causes the rise of loop inductance. This might also lead to the sharing of common return path by different signals that poses high risk of interference among the signals due to higher mutual inductance. This interference results in crosstalk that occurs on the transmitted signal. This phenomenon is proven in the following section with 3DEM simulation.

Analysis of signal reflection and crosstalk with 3DEM modeling

To investigate the impact of stitching via and discontinued return path on high speed signal fidelity, three test models of 3DEM are constructed using Keysight EMPro. In test case 1, two signal traces with 50 ohm characteristic impedance in single ended mode on top PCB layer are transitioned to bottom layer using vias. Each segment of the signal traces on both top and bottom layers is 100 mil long and 5 mil wide. Meanwhile, the diameter of the via barrel and pad is 5 mil and 7 mil respectively.

To read this entire article, which appeared in the June 2018 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

Max Seeley: Some Designers Hesitant to Adopt New Tech

02/20/2020 | Andy Shaughnessy, Design007 Magazine
I spoke with Max Seeley of 3M about a design class he presented at AltiumLive in Frankfurt, Germany. We also discussed autorouting and the continuing advances in EDA tools, as well as the schism between users who embrace new technology and those who still prefer to layout their boards the old-fashioned way. Which camp do you belong to?

Todd Westerhoff on the Value of Solid Design Skills

01/21/2020 | Andy Shaughnessy, Design007 Magazine
Andy Shaughnessy recently caught up with Todd Westerhoff, product marketing manager for Mentor’s HyperLynx signal integrity (SI) tools. Todd discusses some of the challenges that he and his customers are facing and why good design skills have more influence on a PCB than any software tool.

The World of PCBs: Anything But Boring

01/17/2020 | Andy Shaughnessy, Design007 Magazine
Andy Shaughnessy had the chance to catch up with Megan Teta, CID+, product manager of design and education services at Insulectro. Megan explains why she’s excited to become more involved in training and why the world of PCBs is anything but boring, contrary to popular opinion.



Copyright © 2020 I-Connect007. All rights reserved.