Achieving Optimum Signal Integrity During Layer Transition on High-Speed PCBs


Reading time ( words)

This article discusses the impact of stitching vias and discontinued return path or reference on signal integrity during layer transition on high-speed PCBs, particularly in terms of signal reflection and crosstalk.

Introduction

In electronic systems, signal transmission exists in a closed-loop form. The forward current propagates from transmitter to receiver through the signal trace. Meanwhile, the return current travels backward from receiver to transmitter through the power or ground plane directly underneath the signal trace that serves as the reference or return path. The path of forward current and return current forms a loop inductance.

It is important to route the high-speed signal on a continuous reference plane so that the return current can propagate on the desired path beneath the signal trace. In addition to that, whenever there is signal transition from one layer to another through a via, an extra via that connects the reference planes on different PCB layers (i.e., stitching via) must be placed near the signal via to provide a continuous return path.

If the return path is broken due to the absence of a stitching via or switching of reference plane from ground to power or vice versa after layer transition on PCB, the return current might detour and propagate on a longer path, which causes the rise of loop inductance. This might also lead to the sharing of common return path by different signals that poses high risk of interference among the signals due to higher mutual inductance. This interference results in crosstalk that occurs on the transmitted signal. This phenomenon is proven in the following section with 3DEM simulation.

Analysis of signal reflection and crosstalk with 3DEM modeling

To investigate the impact of stitching via and discontinued return path on high speed signal fidelity, three test models of 3DEM are constructed using Keysight EMPro. In test case 1, two signal traces with 50 ohm characteristic impedance in single ended mode on top PCB layer are transitioned to bottom layer using vias. Each segment of the signal traces on both top and bottom layers is 100 mil long and 5 mil wide. Meanwhile, the diameter of the via barrel and pad is 5 mil and 7 mil respectively.

To read this entire article, which appeared in the June 2018 issue of Design007 Magazine, click here.

Share

Print


Suggested Items

Autodesk’s Fusion 360 Merges ECAD, MCAD

05/28/2020 | Andy Shaughnessy, Design007 Magazine
Andy Shaughnessy spoke with Autodesk’s Matt Berggren about the company’s Fusion 360 EDA tool and the new capabilities added to the software. Matt explains how Fusion 360 blends ECAD and MCAD functionality in one environment and at an affordable price, and why he believes it will help round out Autodesk's electronic portfolio with end-to-end capabilities.

Ventec Book Excerpt: Thermal Management with Insulated Metal Substrates

05/28/2020 | I-Connect007 Editorial Team
The following is an excerpt from Chapter 1 of "The Printed Circuit Designer's Guide to... Thermal Management with Insulated Metal Substrates," written by Ventec International Group’s Didier Mauve and Ian Mayoh. In this free eBook, the authors provide PCB designers with the essential information required to understand the thermal, electrical, and mechanical characteristics of insulated metal substrate laminates.

This Month in Design007 Magazine: What Did You Expect From Me, Anyway?

05/14/2020 | Todd Westerhoff, Mentor, a Siemens business
As engineers, we work in the middle of a (usually long) process chain. It’s sort of like working on an intellectual assembly line—we get requirements and data as input, perform our particular task, and then provide our output as requirements and data to the next person on down the line. It seems easy enough. So, why is it that so many of the requirements we’re supposed to meet and so much of the data we receive is downright bad?



Copyright © 2020 I-Connect007. All rights reserved.