Achieving Optimum Signal Integrity During Layer Transition on High-Speed PCBs


Reading time ( words)

This article discusses the impact of stitching vias and discontinued return path or reference on signal integrity during layer transition on high-speed PCBs, particularly in terms of signal reflection and crosstalk.

Introduction

In electronic systems, signal transmission exists in a closed-loop form. The forward current propagates from transmitter to receiver through the signal trace. Meanwhile, the return current travels backward from receiver to transmitter through the power or ground plane directly underneath the signal trace that serves as the reference or return path. The path of forward current and return current forms a loop inductance.

It is important to route the high-speed signal on a continuous reference plane so that the return current can propagate on the desired path beneath the signal trace. In addition to that, whenever there is signal transition from one layer to another through a via, an extra via that connects the reference planes on different PCB layers (i.e., stitching via) must be placed near the signal via to provide a continuous return path.

If the return path is broken due to the absence of a stitching via or switching of reference plane from ground to power or vice versa after layer transition on PCB, the return current might detour and propagate on a longer path, which causes the rise of loop inductance. This might also lead to the sharing of common return path by different signals that poses high risk of interference among the signals due to higher mutual inductance. This interference results in crosstalk that occurs on the transmitted signal. This phenomenon is proven in the following section with 3DEM simulation.

Analysis of signal reflection and crosstalk with 3DEM modeling

To investigate the impact of stitching via and discontinued return path on high speed signal fidelity, three test models of 3DEM are constructed using Keysight EMPro. In test case 1, two signal traces with 50 ohm characteristic impedance in single ended mode on top PCB layer are transitioned to bottom layer using vias. Each segment of the signal traces on both top and bottom layers is 100 mil long and 5 mil wide. Meanwhile, the diameter of the via barrel and pad is 5 mil and 7 mil respectively.

To read this entire article, which appeared in the June 2018 issue of Design007 Magazine, click here.

Share




Suggested Items

Polar Instruments: Simulating PCB Potentialities

12/08/2022 | Nolan Johnson, I-Connect007
Nolan Johnson checks in with Polar’s Martyn Gaudion on the evolving needs of global PCB manufacturing markets in a post-pandemic world, where generating accurate PCB specification documentation is essential to successfully navigating today's rampant supply chain constraints. Polar has positioned itself to meet these needs through agile software product developments that allow OEMs and fabricators to simulate material interactions and end-product specifications, including in-demand features like a comprehensive "structure view" that allows users to visualize all the transmission lines on a given a PCB. Though keeping pace with the demands of a rapidly growing industry has been challenging, Polar's commitment to innovation has kept its software suite ahead of the curve.

HyperLynx: There’s an App for That

08/05/2022 | I-Connect007 Editorial Team
I recently spoke with Todd Westerhoff, product marketing manager for signal integrity software tools at Siemens. We discussed a new capability called HyperLynx Apps that offers a new take on traditional signal and power integrity analysis, and how that fits in with the Siemens plan to put SI and PI tools into the hands of more designers early in the design cycle.

Webinar Review: Thermal Integrity of High-Performance PCB Design

08/01/2022 | Andy Shaughnessy, Design007 Magazine
Electrical and mechanical engineers may be working on the same product development teams, but they speak different languages, and they have completely different objectives. As a result, these folks almost never use the same software tools. But Cadence’s new Celsius Thermal Solver is an exception to the rule. In a new CadenceTECHTALK webinar, “How Static and Dynamic IR Drop Analysis Can Help PCB Designs and Challenges,” product manager Melika Roshandell and SerDes SI/PI engineer Karthik Mahesh Rao explain how the EE and ME can both use the Celsius Thermal Solver to achieve their disparate objectives.



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.