Streamlining Thermal Design of PCBs


Reading time ( words)

When designing a PCB, thermal issues are often locked in at the point of selecting and laying out the chip package for the board. After that, only remedial actions are possible if the components are running too hot. Assumptions made about the uniformity of the airflow in these early design stages can mean a disaster for the commercial viability of a PCB if those assumptions are incorrect. A different approach is needed to improve reliability and to optimize board performance.

This approach starts with considering the overall flow environment, which is especially critical for good operation of air-cooled electronics. Start early, keep it simple, and focus on collaboration between mechanical and electrical design. If you are the mechanical engineer responsible for the thermal integrity of the product, you can provide as much useful feedback as possible to the electronic engineers about effects their choices will have on the thermal issues in their PCB design.

This collaboration entails advising with package selection and the positioning of components to best use system airflow for cooling. Layout and package selection usually are determined by electronic performance and cost; however, temperature and cooling can inevitably affect operation and cost so the consequences of design choices on thermal performance should be made as clear as possible, as early as possible.

Before Placement and Layout

First step is to optimize the enclosure-level airflow. Begin with a simple representation of the enclosureto provide information about the airflow profile over the board. Smear the total board power over the total board surface to get a temperature map indicating any hot regions caused by badly distributed airflow. You can treat the board as a block with an isotropic thermal conductivity between 5 and 10. The results at this stage will not be affected by whichever value you choose in that range.

Do not use the board temperature to estimate component temperatures at this stage because components inject heat locally into the board, which means that the heat flux density into the board below a component is higher than the board average. If the temperature of any section of the board is close to the maximum component case temperature, when you later refine the model to represent the component heat sources discretely, the component temperature limit will then likely be too high.

Make a Best-Guess Estimate for Component Power

Make a best-guess estimate of the individual power budgets for the main heat dissipating components that will be used in the design, and the approximate size of those packages. Then you can describe these packages as footprint heat sources in your simulation, which will smear the remainder of heat uniformly over the board surface.

The system architect will already have some idea of what key components will be required, where they will need to be positioned, and their size, etc. For example, some components may be used that were selected for another product or retained from the previous generation product.

To read this entire article, which appeared in the December 2017 issue of The PCB Design Magazine, click here.

Share




Suggested Items

HyperLynx: There’s an App for That

08/05/2022 | I-Connect007 Editorial Team
I recently spoke with Todd Westerhoff, product marketing manager for signal integrity software tools at Siemens. We discussed a new capability called HyperLynx Apps that offers a new take on traditional signal and power integrity analysis, and how that fits in with the Siemens plan to put SI and PI tools into the hands of more designers early in the design cycle.

Webinar Review: Thermal Integrity of High-Performance PCB Design

08/01/2022 | Andy Shaughnessy, Design007 Magazine
Electrical and mechanical engineers may be working on the same product development teams, but they speak different languages, and they have completely different objectives. As a result, these folks almost never use the same software tools. But Cadence’s new Celsius Thermal Solver is an exception to the rule. In a new CadenceTECHTALK webinar, “How Static and Dynamic IR Drop Analysis Can Help PCB Designs and Challenges,” product manager Melika Roshandell and SerDes SI/PI engineer Karthik Mahesh Rao explain how the EE and ME can both use the Celsius Thermal Solver to achieve their disparate objectives.

The Great Divide in PCB Simulation Software

07/26/2022 | Zachariah Peterson, NWES
Today’s PCB design engineers have more layout and analysis tools at their disposal than ever before. Over the years we’ve seen layout tools become more automated, rules-driven, and more integrated. Now we even have integration between design tools from different vendors and ranging across domains, starting with basic circuit design, and spanning up to PLM and ERP integration. It really is a great time to be a designer.



Copyright © 2022 I-Connect007. All rights reserved.