PCB Designers Notebook: Embedding Components, Part 2


Reading time ( words)

Note: Part 1 of this column appeared in the June 2017 issue of The PCB Magazine.

Technology and processes for embedding capacitor and inductor elements rely on several unique methodologies. Regarding providing capacitor functions, IPC-4821 defines two methodologies for forming capacitor elements within the PCB structure: laminate-based (copper-dielectric-copper) or planar process and non-laminate process using deposited dielectric materials.

Distributed (planar) capacitors

Considered the simplest solution and commonly used to replace discrete power supply decoupling capacitors the planar capacitors utilize closely spaced power and ground planes separated by a thin dielectric layer. The dielectric can be a layer of the glass-reinforced epoxy material, a thin layer of non-reinforced polymer, or a polymer sheet material filled with ceramic powder. This technique will provide significant capacitance and delivers very low inductance. The capacitance range for planar capacitors is 1pF to 1mF, dependent on the dielectric constant, material thickness and area.

Because the planar capacitance is proportional to the dielectric thickness between the power and ground planes, thin dielectrics are preferred. This will increase planar capacitance while reducing planar spreading inductance and minimizes overall board thickness. The reduction of planar spreading inductance also results in a lowering the impedance path while increasing the effectiveness of discrete capacitances.

The total capacitance of the power and ground pair is determined by the effective common (overlapping) area of the copper electrodes. This area, times the capacitance density, represents the total capacitance.

To read this entire article, which appeared in the June 2017 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Development of Flexible Hybrid Electronics

08/14/2019 | Weifeng Liu, PhD, Flex
This article will present a hybrid manufacturing process to manufacture FHE systems with a two-layer interconnect structure utilizing screen printing of silver conductive ink, filled microvias to connect ink traces at the different layers, and use of the traditional reflow process to attach the semiconductor chips to the printed substrates.

Altium Designer 19.0 Features Printed Electronics Design Functions

08/08/2019 | Andy Shaughnessy, Design007 Magazine
The newest version of Altium Designer—revision 19.0—includes functionality for designing printed electronic circuits. We wanted to get the scoop on Altium’s PEC tools, so we asked Nikolay Ponomarenko, Altium’s director of product management, to give us a tour of the new functions.

IPC High-reliability Forum and Microvia Summit Review, Part II

08/06/2019 | Pete Starkey, I-Connect007
The Microvia Summit on May 16 was a special feature of the 2019 event in Baltimore, since microvia challenges and reliability issues have become of great concern to the PCB manufacturing industry. It provided updates on the work of members of the IPC V-TSL-MVIA Weak Interface Microvia Failures Technology Solutions Subcommittee and opportunities to learn about latest developments in methods to reveal and explain the presence of latent defects, identify causes and cures, and be able to consistently and confidently supply reliable products.



Copyright © 2019 I-Connect007. All rights reserved.