PCB Designers Notebook: Embedding Components, Part 2


Reading time ( words)

Note: Part 1 of this column appeared in the June 2017 issue of The PCB Magazine.

Technology and processes for embedding capacitor and inductor elements rely on several unique methodologies. Regarding providing capacitor functions, IPC-4821 defines two methodologies for forming capacitor elements within the PCB structure: laminate-based (copper-dielectric-copper) or planar process and non-laminate process using deposited dielectric materials.

Distributed (planar) capacitors

Considered the simplest solution and commonly used to replace discrete power supply decoupling capacitors the planar capacitors utilize closely spaced power and ground planes separated by a thin dielectric layer. The dielectric can be a layer of the glass-reinforced epoxy material, a thin layer of non-reinforced polymer, or a polymer sheet material filled with ceramic powder. This technique will provide significant capacitance and delivers very low inductance. The capacitance range for planar capacitors is 1pF to 1mF, dependent on the dielectric constant, material thickness and area.

Because the planar capacitance is proportional to the dielectric thickness between the power and ground planes, thin dielectrics are preferred. This will increase planar capacitance while reducing planar spreading inductance and minimizes overall board thickness. The reduction of planar spreading inductance also results in a lowering the impedance path while increasing the effectiveness of discrete capacitances.

The total capacitance of the power and ground pair is determined by the effective common (overlapping) area of the copper electrodes. This area, times the capacitance density, represents the total capacitance.

To read this entire article, which appeared in the June 2017 issue of The PCB Design Magazine, click here.

Share


Suggested Items

Institute of Circuit Technology Hayling Island Seminar

10/10/2018 | Pete Starkey, I-Connect007
After an extreme summer heat wave had left trees dehydrated and struggling to morph into their customary display of reds and golds, the leaves were brown and brittle as the great and good of the UK printed circuit board industry crossed the bridge from the mainland of the south coast of England to Hayling Island for the autumn seminar of the Institute of Circuit Technology on September 20, 2018.

Chuck Bauer Discusses the Future of Packaging

09/05/2018 | I-Connect007 Editorial Team
When we decided to cover the future of PCB packaging, we knew we would have to interview Charles Bauer, Ph.D., owner of TechLead Corporation. Chuck recently spoke with Happy Holden, Andy Shaughnessy and Barry Matties about current trends in packaging, the need for product designers and manufacturers to communicate, and why no matter how cool the technology is, cost is still king.

Excerpt: The Printed Circuit Designer’s Guide to…Flex and Rigid-Flex Fundamentals

06/25/2018 | Dave Lackey and Anaya Vardya, American Standard Circuits
The design process is arguably the most important part of the flex circuit procurement process. The decisions made in the design process will have a lasting impact, for better or worse, throughout the manufacturing cycle. In advance of providing important details about the actual construction of the flex circuit, it is of value to provide some sort of understanding of the expected use environment for the finished product.



Copyright © 2018 I-Connect007. All rights reserved.