PCB Design in the Age of IoT


Reading time ( words)

From the early days of printed circuit boards, the electronics industry has made huge strides in board materials, copper printing methods, miniaturization, rigid-flex, ELIC, EDA, and much more. Many of the devices we use in our homes, our vehicles, and in our workplaces would not be possible without this continuous evolution of PCB design and technology. And yet in 2017, we are poised to shift from evolution to revolution, driven by the idea of the Internet of Things.

By now we’ve all heard of IoT and have been presented with a multitude of definitions for it. We’ve also been presented with a set of benefits that sound nice, if not compelling: refrigerators that can tell us when to restock groceries, cars that can avoid traffic, home thermostats and lighting that can be adjusted from our offices, and so much more. But these examples trivialize what the IoT will become and the impact it will have on us. When realized, the IoT will transform our world from a collection of independent “things” into an organized system with logic, reasoning, senses, circulation, and motor skills. In other words, all of the devices and systems in our world will become an organism.

This might sound scary, and will no doubt evoke visions of dystopian societies where machines rule humans, but that’s only because movie scripts need a mechanism called an “inciting event” upon which to build an exciting story. In real life, this story doesn’t need to be scary; in fact, it holds the promise of a world of possibilities to make life safer, healthier, more convenient, and just plain better.

Imagine vehicles that can sense a problem before it occurs, and arrange for parts to be put into dealer inventory and service to be performed for you, all without you ever making a single phone call, and certainly without the roadside breakdown. Picture a farm with the intelligence to sense an increasing pest insect population and release pheromones that disrupt mating cycles—reducing the need for chemical pesticides and ultimately making our food supply safer, healthier, and more abundant.

To read this entire article, which appeared in the May 2017 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Altium Prepares for Munich Show as Growth Continues

01/17/2019 | Andy Shaughnessy, Design007 Magazine
It’s been just two months since the AltiumLive event drew several hundred designers to San Diego, California, and Altium is already gearing up for the next show in Munich, Germany (January 15–17, 2019). I recently spoke with Chris Donato, VP of global sales for Altium, about the upcoming AltiumLive show as well as the company’s growth over the past few years.

January 2019 Issue of Design007 Magazine Available Now

01/15/2019 | I-Connect007
The component shortage is getting crazy. Some PCB designers are finding their favorite capacitors on 50-week and 80-week lead times, or worse. How do you design a board today when the components you need won’t be available for a year or more? In the January 2019 issue of Design007 Magazine, we asked our expert contributors to explain the current component shortage, as well as some of the workarounds that can help you get your next design out the door sooner rather than later.

A Fractal Conversation with Jim Howard and Greg Lucas

01/15/2019 | Barry Matties and Andy Shaughnessy, I-Connect007
Veteran PCB technologists Jim Howard and Greg Lucas have made an interesting discovery: Certain shapes of copper planes make a PCB run more efficiently than other shapes, a process they dubbed fractal design. It doesn’t appear to cost a penny more, and testing suggests that fractal design techniques could eliminate edge noise. Barry Matties and Andy Shaughnessy asked Jim and Greg to discuss the fractal design process, and the advantages of using this technique.



Copyright © 2019 I-Connect007. All rights reserved.