Bruce Mahler Discusses Ohmega’s Resistive Material Technology


Reading time ( words)

Bruce Mahler, vice president of Ohmega Technologies, sat down for an interview with me at DesignCon 2017. He discussed the company’s latest embedded resistive materials, as well as some of the drivers and challenges in that segment of the materials industry.

Andy Shaughnessy: Bruce, why don't you start off by giving us a brief background on Ohmega Technologies.

Bruce Mahler: Ohmega Technologies manufactures a thin-film resistive material, which is a nickel phosphorous alloy plated onto copper foil. That resistive foil, called OhmegaPly RCM, is laminated to a dielectric like regular copper foil and is then subtractively processed using standard PCB print and etch, to create resistive elements that are used either embedded within a multilayer printed circuit board or on the surface of a printed circuit board. We've been doing this for more than 40 years now, and we’re surprised with the variety of applications that use our technology. Every year it seems that there are new applications, new ways to use the resistive film. So, it's like a constant renewal of the technology in new opportunities, of new growth of the use of embedded resistors within printed circuit boards.

Shaughnessy: What are the primary markets that these boards wind up in?

Mahler: Good question. One of the primary markets is A&D (aerospace & defense) which we have been supplying our products to for decades. It’s mostly used in radar systems, control circuits, and in critical operating systems where absolute performance and reliability are essential. The resistive material cannot be affected by temperature extremes, high G-force, vibration, magnetic or cosmic radiation and those kinds of things.

The other big market is sensor technologies. We supply our product to the MEMS microphone manufacturers. If you have a cellphone, you probably have OhmegaPly within that cell phone. We're used in the MEMS microphone of cell phones as part of an RC filter to improve the sound fidelity of the microphones; we've been doing that for many years. There’s also a growing area of applications and use in sensor technologies: not just MEMS microphones but other MEMS devices and technologies.

The third area of use where we see growing opportunities are in heater designs. Heater elements are used for things like semi-active laser activation of smart munitions or embedded resistors as heater elements in a printed circuit board to maintain surface components at optimum temperatures for optimum operation, whether that's in deep-space applications or even down to earth in medical diagnostic type applications. OhmegaPly has also been used as an internal heater in burn-in boards to allow for IC burn-in without the need of a temperature chamber.

To read this entire article, which appeared in the April 2017 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

New Book From Isola Highlights Importance of Material Selection

01/14/2022 | I-Connect007 Editorial Team
In "The Printed Circuit Designer’s Guide to... High Performance Materials," the latest release from I-007eBooks, readers will learn how to overcome challenges associated with choosing the right material for their specific application. Author Michael Gay of Isola provides a clearer picture of what to know when determining which material is the most desirable for which products. PCB materials and DFM expert Mark Thompson says, “I love this book, particularly the sections on the effects of the glass weave, the history of laminate, and the difference between Dk and effective Dk."

Living in a Material World: High-Speed Design Strategies

01/13/2022 | I-Connect007 Editorial Team
Any discussion about high-speed PCB design techniques would be incomplete without considering the properties and requirements of the materials. Your material selection drives much of your design strategy when you’re operating at 28 gigabits per second or faster. We recently spoke with high-speed design expert Lee Ritchey of Speeding Edge, and electronic materials veteran Tarun Amla of Avishtech and Thintronics, about the relationship between advanced PCB materials and high-speed design techniques. They discuss the challenges facing designers and engineers working with materials at speeds that were considered unreachable not long ago, and what designers need to know about material selection as board speeds continue rising toward the stratosphere.

RealTime with... American Standard Circuits: Thermal Management

12/16/2021 | Pete Starkey, I-Connect007
In the third of a series of three RealTime with... interviews, I-Connect007 managing editor Nolan Johnson received knowledgeable and informative answers from Anaya Vardya, John Bushie, and Dave Lackey of American Standard Circuits to his questions on the topic of thermal management. Anaya Vardya began by clarifying the terminology, describing thermal conductivity as a material property defining how quickly heat was transmitted through a piece of that material, whereas thermal management was about analysing the entire system, trying to understand how much heat was being generated, and using appropriate techniques to dissipate that heat as efficiently as possible.



Copyright © 2022 I-Connect007. All rights reserved.