A New Power Design Methodology for PCB Designs

Reading time ( words)


Advanced PCB design is an iterative process of analysis-fix-analysis. Historically, this process is very time-consuming, requiring analysis experts and PCB designers to work together to find and fix layout problems. This article describes a new PCB design methodology that allows a PCB designer to perform the power design without having to run expert-level analysis tools. This methodology provides the setup automation for advanced analysis without the need to understand every minute parameter, and can be completed in a few steps.

User-friendly analysis reports guide the PCB designer to the exact location where design changes must be made to meet specifications. IPC standard-based constraint of automatic calculations helps PCB designers understand how good is good enough for the layout changes. All violations of IPC standards can be marked directly in the layout, so PCB designers can easily find the problems in the layout and fix them before handing the design over to the power integrity (PI) experts. This allows PI experts focus on performance optimization, cost reduction, and other issues, so a high-quality design can be produced in a shorter amount of time.

For modern electronic systems, power design has become more important with the requirements of low power, minimization, high density and high-speed data rate for high-end applications. Usually, the planes, copper pours, routed power traces and vias on a PCB serve as power distribution, signal return paths, heat dissipation and so on.

The following questions must be considered:

  • How does the PI engineer communicate with the hardware engineer and PCB designer about problems with the design and guidance on how to fix it?
  • How does the PCB designer communicate with the PI engineer about solutions to those problems?
  • How can the design engineer and PCB designer determine whether a solution is good in the early stage?

Generally, PI engineers communicate with PCB designers by email, phone calls, or meeting face to face to discuss the issues and the solutions to fix problems with the layout.

Unlike when analyzing signal integrity, PI engineers are not usually involved in the early stages of the design because of the lack of pre-layout analysis tools for power analysis in the industry. The first cut of PCB power design usually is based on experience and industry conventions, so many power problems only surface late in the process, leaving PI engineers to focus mainly on the post-layout verifications for power systems. Also, PCB designers generally do not want to use professional analysis tools because of their complicated settings and different EDA tools/platforms.

This lag time greatly affects the efficiency of design and the time-to-market of the products.

To read this entire article, which appeared in the February 2016 issue of The PCB Design Magazine, click here.



Suggested Items

Stitching Capacitor: Crosstalk Mitigation for Return Path Discontinuity

06/13/2019 | Chang Fei Yee, Keysight Technologies
When the return path is broken due to the switching of reference planes with different potential, e.g., from ground to power or vice versa after layer transition on PCB, the return current might detour and propagate on a longer path, which causes a rise in loop inductance. This might lead to the sharing of a common return path by different signals that pose a high risk of interference among the signals due to higher mutual inductance. This interference results in signal crosstalk. To mitigate the crosstalk due to return path discontinuity (RPD), stitching capacitors are mounted on the PCB to serve as a bridge between the two reference planes of interest on different PCB layers.

Technically Appropriate Material Choices are Key to Design Success

05/16/2019 | Nolan Johnson, I-Connect007
Materials are no longer a passive part of the design; they play an active role in the manufacturability, reliability, and speed of a PCB. I-Connect007’s Nolan Johnson and Mike Creeden, founder of San Diego PCB Design, discuss several key characteristics that designers should consider in their material selection process.

EM Modeling: The Impact of Copper Ground Pour on Loss and Impedance

05/02/2019 | Chang Fei Yee, Keysight Technologies
This article briefly introduces the general purposes of copper ground pour on printed circuit boards. Subsequently, the impact of copper ground pour on PCB channel loss in terms of insertion loss and impedance in terms of time domain reflectometry (TDR) is studied with electromagnetic modeling using Mentor HyperLynx.

Copyright © 2019 I-Connect007. All rights reserved.